895 resultados para Realistic threat
Resumo:
Most security models for authenticated key exchange (AKE) do not explicitly model the associated certification system, which includes the certification authority (CA) and its behaviour. However, there are several well-known and realistic attacks on AKE protocols which exploit various forms of malicious key registration and which therefore lie outside the scope of these models. We provide the first systematic analysis of AKE security incorporating certification systems (ASICS). We define a family of security models that, in addition to allowing different sets of standard AKE adversary queries, also permit the adversary to register arbitrary bitstrings as keys. For this model family we prove generic results that enable the design and verification of protocols that achieve security even if some keys have been produced maliciously. Our approach is applicable to a wide range of models and protocols; as a concrete illustration of its power, we apply it to the CMQV protocol in the natural strengthening of the eCK model to the ASICS setting.
Resumo:
Members of the insulin-like growth factor (IGF) family have been shown to play critical roles in normal growth and development, as well as in tumour biology. The IGF system is complex and the biological effects of the IGFs are determined by their diverse interactions between many molecules, including their interactions with extracellular matrix (ECM) proteins. Recent studies have demonstrated that IGFs associate with the ECM protein vitronectin (VN) through IGF-binding proteins (IGFBP) and that this interaction modulates IGF-stimulated biological functions, namely cell migration and cell survival through the cooperative involvement of the type-I IGF receptor (IGF-1R) and VN-binding integrins. Since IGFs play important roles in the transformation and progression of breast cancer and VN has been found to be over-expressed at the leading edge of breast tumours, this project aimed to describe the effects of IGF-I:VN interactions on breast cell function. This was undertaken to dissect the molecular mechanisms underlying IGF-I:VN-induced responses and to design inhibitors to block the effects of such interactions. The studies described herein demonstrate that the increase in migration of MCF-7 breast cancer cells in response to the IGF-I:IGFBP-5:VN complex is accompanied by differential expression of genes known to be involved in migration, invasion and/or survival, including Tissue-factor (TF), Stratifin (SFN), Ephrin-B2, Sharp-2 and PAI-1. This „migration gene signature‟ was confirmed using real-time PCR analysis. Substitution of the native IGF-I within the IGF-I:IGFBP:VN complex with the IGF-I analogue, \[L24]\[A31]-IGF-I, which has a reduced affinity for the IGF-1R, failed to stimulate cell migration and interestingly, also failed to induce the differential gene expression. This supports the involvement of the IGF-1R in mediating these changes in gene expression. Furthermore, lentiviral shRNA-mediated stable knockdown of TF and SFN completely abrogated the increased cell migration induced by IGF-I:IGFBP:VN complexes in MCF-7 cells. Indeed, when these cells were grown in 3D Matrigel™ cultures a decrease in the overall size of the 3D spheroids in response to the IGF-I:IGFBP:VN complexes was observed compared to the parental MCF-7 cells. This suggests that TF and SFN have a role in complex-stimulated cell survival. Moreover, signalling studies performed on cells with the reduced expression of either TF or SFN had a decreased IGF-1R activation, suggesting the involvement of signalling pathways downstream of IGF-1R in TF- and/or SFN-mediated cell migration and cell survival. Taken together, these studies provide evidence for a common mechanism activated downstream of the IGF-1R that induces the expression of the „migration gene signature‟ in response to the IGF-I:IGFBP:VN complex that confers breast cancer cells the propensity to migrate and survive. Given the functional significance of the interdependence of ECM and growth factor (GF) interactions in stimulating processes key to breast cancer progression, this project aimed at developing strategies to prevent such growth factor:ECM interactions in an effort to inhibit the downstream functional effects. This may result in the reduction in the levels of ECM-bound IGF-I present in close proximity to the cells, thereby leading to a reduction in the stimulation of IGF-1R present on the cell surface. Indeed, the inhibition of IGF-I-mediated effects through the disruption of its association with ECM would not alter the physiological levels of IGF-I and potentially only exert effects in situations where abnormal over expression of ECM proteins are found; namely carcinomas and hyperproliferative diseases. In summary, this PhD project has identified novel, innovative and realistic strategies that can be used in vitro to inhibit the functions exerted by the IGF-I:IGFBP:VN multiprotein complexes critical for cancer progression, with a potential to be translated into in vivo investigations. Furthermore, TF and SFN were found to mediate IGF-I:IGFBP:VN-induced effects, thereby revealing their potential to be used as therapeutic targets or as predictive biomarkers for the efficacy of IGF-1R targeting therapies in breast cancer patients. In addition to its therapeutic and clinical scope, this PhD project has significantly contributed to the understanding of the role of the IGF system in breast tumour biology by providing valuable new information on the mechanistic events underpinning IGF-I:VN-mediated effects on breast cell functions. Furthermore, this is the first instance where favourable binding sites for IGF-II, IGFBP-3 and IGFBP-5 on VN have been identified. Taken together, this study has functionally characterised the interactions between IGF-I and VN and through innovative strategies has provided a platform for the development of novel therapies targeting these interactions and their downstream effects.
Resumo:
The paper examines the influence of unemployment insurance on the duration of employment spells in Canada using the 1988–90 Labour Market Activity Survey. The primary focus of the paper is to evaluate whether estimated UI effects are sensitive to the degree to which institutional rules and regulations governing UI eligibility and entitlement are explicitly modelled. The key result of the paper is that it is indeed important to allow for institutional detail when estimating unemployment insurance effects. Estimates using simple proxies for eligibility indicate small, often insignificant UI effects. The size and significance of the effects rise as more realistic versions of the variables are adopted. The estimates using the eligibility variables incorporating the greatest level of institutional detail suggest that a jump in the hazard rate by a factor of 2.3 may not be an unreasonable estimate of the effect.
Resumo:
In Australia, and elsewhere, the movement of trains on long-haul rail networks is usually planned in advance. Typically, a train plan is developed to confirm that the required train movements and track maintenance activities can occur. The plan specifies when track segments will be occupied by particular trains and maintenance activities. On the day of operation, a train controller monitors and controls the movement of trains and maintenance crews, and updates the train plan in response to unplanned disruptions. It can be difficult to predict how good a plan will be in practice. The main performance indicator for a train service should be reliability - the proportion of trains running the service that complete at or before the scheduled time. We define the robustness of a planned train service to be the expected reliability. The robustness of individual train services and for a train plan as a whole can be estimated by simulating the train plan many times with random, but realistic, perturbations to train departure times and segment durations, and then analysing the distributions of arrival times. This process can also be used to set arrival times that will achieve a desired level of robustness for each train service.
Resumo:
Objectives – To describe the development of an educational workshop to develop procedural skills in undergraduate Paramedic students using fresh frozen cadavers and to report the student’s assessment of the program. Methods – A six-hour anatomy based workshop was developed using fresh frozen cadavers to teach a range of airway and invasive procedural skills to second year undergraduate paramedic students. Embedded QUAN (qual) methodology will be utilised to evaluate the student’s satisfaction, perception and quality of teaching as compared to other existing clinical teaching techniques such as high fidelity simulation. Students will be asked to complete an anonymous validated survey (10 questions formulated on a 5 point Likert scale) and provide a qualitative feedback pre and post the six-hour workshop. Results – This is a prospective study planned for September 2013. Low-risk human research ethics are being sought. Teaching evaluation results from the inaugural 2012 workshop (undergraduate and postgraduate Paramedic students) and interim results for 2013 will be presented. Conclusions – Clinical teaching using fresh frozen cadavers thus far has predominately been used in the education of medical and surgical trainees. A number of studies have found them to be effective and in some cases superior to traditional high fidelity simulation teaching strategies. Fresh frozen cadavers are said to provide perfect anatomy, normal tissue consistency and a realistic operative training experience (Lloyd, Maxwell-Armstrong et al. 2011). The authors believe that this study will show that the use of fresh frozen cadavers offers a safe and effective mode to teach procedural skills to student paramedics that will help bridge the skills gap and increase confidence prior to students undertaking such interventions on living patients. A modified training program may be formulated for general practitioners undertaking Emergency Medicine Advanced Rural Skills.
Resumo:
We have previously reported a preliminary taxonomy of patient error. However, approaches to managing patients' contribution to error have received little attention in the literature. This paper aims to assess how patients and primary care professionals perceive the relative importance of different patient errors as a threat to patient safety. It also attempts to suggest what these groups believe may be done to reduce the errors, and how. It addresses these aims through original research that extends the nominal group analysis used to generate the error taxonomy. Interviews were conducted with 11 purposively selected groups of patients and primary care professionals in Auckland, New Zealand, during late 2007. The total number of participants was 83, including 64 patients. Each group ranked the importance of possible patient errors identified through the nominal group exercise. Approaches to managing the most important errors were then discussed. There was considerable variation among the groups in the importance rankings of the errors. Our general inductive analysis of participants' suggestions revealed the content of four inter-related actions to manage patient error: Grow relationships; Enable patients and professionals to recognise and manage patient error; be Responsive to their shared capacity for change; and Motivate them to act together for patient safety. Cultivation of this GERM of safe care was suggested to benefit from 'individualised community care'. In this approach, primary care professionals individualise, in community spaces, population health messages about patient safety events. This approach may help to reduce patient error and the tension between personal and population health-care.
Resumo:
Immigration to Australia has long been the focus of negative political interest. In recent times, the proposal of exclusionary policies such as the Malaysia Deal in 2011 has fuelled further debate. In these debates, Federal politicians often describe asylum seekers and refugees as ‘illegal’, ‘queue jumpers’, and ‘boat people’. This paper investigates how the political discourse constructs asylum seekers and refugees during debates surrounding the Malaysia Deal in the Federal Parliament of Australia in 2011. Hansard Parliamentary debates were analysed to identify the underlying themes and constructions that permeate political discourse about asylum seekers and refugees. This paper argues that a dichotomous characterisation of legitimacy pervades their construction with this group constructed either as legitimate humanitarian refugees or as illegitimate ‘boat arrivals’. These constructions result in the misrepresentation of asylum seekers as illegitimate, undermining their right to protection under Australia’s laws and international obligations. This construction also represents a shift in federal political discourse from constructing asylum seekers as a border or security threat, towards an increasing preoccupation with this categorisation of people as legitimate, or illegitimate.
Resumo:
Fruit flies are the insects which cause maggots in your backyard fruit and vegetables. They are not just a nuisance to gardeners, but the single greatest insect threat to commercial and subsistence fruit growers throughout Asia, Australia and the Pacific. Queensland fruit fly, the focus of this PhD, costs Australia an estimated $100million per year. I focused specifically on how Queensland fruit fly uses different commercial citrus varieties. I identified specific plant related mechanisms which increase a fruit’s resistance to fruit fly attack. This information can be used by plant breeders to make fruit less prone to fruit fly damage.
Resumo:
Aims To describe the nature and size of long-term residential care homes in New Zealand; funding of facilities; and the ethnic and gender composition of residents and residential care workers nationwide. Methods A postal, fax, and email survey of all long-term residential care homes in New Zealand. Results Completed surveys were received from an eligible 845 facilities (response rate: 55%). The majority of these (54%) facilities housed less than 30 residents. Of the 438 (94%) facilities completing the questions about residents’ ethnicity, 432 (99%) housed residents from New Zealand European (Pakeha) descent, 156 (33%) housed at least 1 Maori resident, 71 (15%) at least 1 Pacific (Islands) resident, and 61 (13%) housed at least 1 Asian resident. Facilities employed a range of ethnically diverse staff, with 66% reporting Maori staff. Less than half of all facilities employed Pacific staff (43%) and Asian staff (33%). Registered nursing staff were mainly between 46 and 60 years (47%), and healthcare assistant staff were mostly between 25 and 45 years old (52%). Wide regional variation in the ethnic make up of staff was reported. About half of all staff were reported to have moved within the previous 2 years. Conclusions The age and turnover of the residential care workforce suggests the industry continues to be under threat from staffing shortages. While few ethnic minority residents live in long-term care facilities, staff come from diverse backgrounds, especially in certain regions.
Resumo:
The addition of surface tension to the classical Stefan problem for melting a sphere causes the solution to blow up at a finite time before complete melting takes place. This singular behaviour is characterised by the speed of the solid-melt interface and the flux of heat at the interface both becoming unbounded in the blow-up limit. In this paper, we use numerical simulation for a particular energy-conserving one-phase version of the problem to show that kinetic undercooling regularises this blow-up, so that the model with both surface tension and kinetic undercooling has solutions that are regular right up to complete melting. By examining the regime in which the dimensionless kinetic undercooling parameter is small, our results demonstrate how physically realistic solutions to this Stefan problem are consistent with observations of abrupt melting of nanoscaled particles.
Resumo:
Pesticides used in agricultural systems must be applied in economically viable and environmentally sensitive ways, and this often requires expensive field trials on spray deposition and retention by plant foliage. Computational models to describe whether a spray droplet sticks (adheres), bounces or shatters on impact, and if any rebounding parent or shatter daughter droplets are recaptured, would provide an estimate of spray retention and thereby act as a useful guide prior to any field trials. Parameter-driven interactive software has been implemented to enable the end-user to study and visualise droplet interception and impaction on a single, horizontal leaf. Living chenopodium, wheat and cotton leaves have been scanned to capture the surface topography and realistic virtual leaf surface models have been generated. Individual leaf models have then been subjected to virtual spray droplets and predictions made of droplet interception with the virtual plant leaf. Thereafter, the impaction behaviour of the droplets and the subsequent behaviour of any daughter droplets, up until re-capture, are simulated to give the predicted total spray retention by the leaf. A series of critical thresholds for the stick, bounce, and shatter elements in the impaction process have been developed for different combinations of formulation, droplet size and velocity, and leaf surface characteristics to provide this output. The results show that droplet properties, spray formulations and leaf surface characteristics all influence the predicted amount of spray retained on a horizontal leaf surface. Overall the predicted spray retention increases as formulation surface tension, static contact angle, droplet size and velocity decreases. Predicted retention on cotton is much higher than on chenopodium. The average predicted retention on a single horizontal leaf across all droplet size, velocity and formulations scenarios tested, is 18, 30 and 85% for chenopodium, wheat and cotton, respectively.
Resumo:
Ross River virus is a mosquito-borne alphavirus that causes approximately 5000 cases of epidemic polyarthritis in Australia each year and has direct medical-associated costs of approximately US$15 million annually. While mosquito control programs are able, at best, to contain rather than prevent this disease, natural infection with Ross River virus confers lifelong protection against subsequent clinical infection. A killed-virus vaccine has been developed, which is in Phase III clinical trials. Analyses of intra-host genetic diversity and of long-term evolutionary changes in Ross River virus populations suggest that antigenic variation is unlikely to pose a threat to the efficacy of this vaccine.
Resumo:
High-speed broadband internet access is widely recognised as a catalyst to social and economic development. However, the provision of broadband Internet services with the existing solutions to rural population, scattered over an extensive geographical area, remains both an economic and technical challenge. As a feasible solution, the Commonwealth Scientific and Industrial Research Organization (CSIRO) proposed a highly spectrally efficient, innovative and cost-effective fixed wireless broadband access technology, which uses analogue TV frequency spectrum and Multi-User MIMO (MUMIMO) technology with Orthogonal-Frequency-Division-Multiplexing (OFDM). MIMO systems have emerged as a promising solution for the increasing demand of higher data rates, better quality of service, and higher network capacity. However, the performance of MIMO systems can be significantly affected by different types of propagation environments e.g., indoor, outdoor urban, or outdoor rural and operating frequencies. For instance, large spectral efficiencies associated with MIMO systems, which assume a rich scattering environment in urban environments, may not be valid for all propagation environments, such as outdoor rural environments, due to the presence of less scatterer densities. Since this is the first time a MU-MIMO-OFDM fixed broadband wireless access solution is deployed in a rural environment, questions from both theoretical and practical standpoints arise; For example, what capacity gains are available for the proposed solution under realistic rural propagation conditions?. Currently, no comprehensive channel measurement and capacity analysis results are available for MU-MIMO-OFDM fixed broadband wireless access systems which employ large scale multiple antennas at the Access Point (AP) and analogue TV frequency spectrum in rural environments. Moreover, according to the literature, no deterministic MU-MIMO channel models exist that define rural wireless channels by accounting for terrain effects. This thesis fills the aforementioned knowledge gaps with channel measurements, channel modeling and comprehensive capacity analysis for MU-MIMO-OFDM fixed wireless broadband access systems in rural environments. For the first time, channel measurements were conducted in a rural farmland near Smithton, Tasmania using CSIRO's broadband wireless access solution. A novel deterministic MU-MIMO-OFDM channel model, which can be used for accurate performance prediction of rural MUMIMO channels with dominant Line-of-Sight (LoS) paths, was developed under this research. Results show that the proposed solution can achieve 43.7 bits/s/Hz at a Signal-to- Noise Ratio (SNR) of 20 dB in rural environments. Based on channel measurement results, this thesis verifies that the deterministic channel model accurately predicts channel capacity in rural environments with a Root Mean Square (RMS) error of 0.18 bits/s/Hz. Moreover, this study presents a comprehensive capacity analysis of rural MU-MIMOOFDM channels using experimental, simulated and theoretical models. Based on the validated deterministic model, further investigations on channel capacity and the eects of capacity variation, with different user distribution angles (θ) around the AP, were analysed. For instance, when SNR = 20dB, the capacity increases from 15.5 bits/s/Hz to 43.7 bits/s/Hz as θ increases from 10° to 360°. Strategies to mitigate these capacity degradation effects are also presented by employing a suitable user grouping method. Outcomes of this thesis have already been used by CSIRO scientists to determine optimum user distribution angles around the AP, and are of great significance for researchers and MU-MUMO-OFDM system developers to understand the advantages and potential capacity gains of MU-MIMO systems in rural environments. Also, results of this study are useful to further improve the performance of MU-MIMO-OFDM systems in rural environments. Ultimately, this knowledge contribution will be useful in delivering efficient, cost-effective high-speed wireless broadband systems that are tailor-made for rural environments, thus, improving the quality of life and economic prosperity of rural populations.
Resumo:
This paper presents an innovative and practical approach to controlling heave motion in the presence of acute stochastic atmospheric disturbances during landing operations of an Unmanned Autonomous Helicopter (UAH). A heave motion model of an UAH is constructed for the purpose of capturing dynamic variations of thrust due to horizontal wind gusts. Additionally, through construction of an effective observer to estimate magnitudes of random gusts, a promising and feasible feedback-feedforward PD controller is developed, based on available measurements from onboard equipment. The controller dynamically and synchronously compensates for aerodynamic variations of heave motion resulting from gust influence, to increase the disturbance-attenuation ability of the UAH in a windy environment. Simulation results justify the reliability and efficiency of the suggested gust observer to estimate gust levels when applied to the heave motion model of a small unmanned helicopter, and verify suitability of the recommended control strategy to realistic environmental conditions.
Resumo:
Objectives To examine the effects on monotonous driving of normal sleep versus one night of sleep restriction in continuous positive airway pressure (CPAP) treated obstructive sleep apnoea (OSA) patients compared with age matched healthy controls. Methods Nineteen CPAP treated compliant male OSA patients (OSA-treated patients (OPs)), aged 50–75 years, and 20 healthy age-matched controls underwent both a normal night’s sleep and sleep restriction to 5 h (OPs remained on CPAP) in a counterbalanced design. All participants completed a 2 h afternoon monotonous drive in a realistic car simulator. Driving was monitored for sleepiness-related minor and major lane deviations, with ‘safe’ driving time being total time driven prior to first major lane deviation. EEGs were recorded continuously, and subjective sleepiness ratings were taken at regular intervals throughout the drive. Results After a normal night’s sleep, OPs and controls did not differ in terms of driving performance or in their ability to assess the levels of their own sleepiness, with both groups driving ‘safely’ for approximately 90 min. However, after sleep restriction, OPs had a significantly shorter (65 min) safe driving time and had to apply more compensatory effort to maintain their alertness compared with controls. They also underestimated the enhanced sleepiness. Nevertheless, apart from this caveat, there were generally close associations between subjective sleepiness, likelihood of a major lane deviation and EEG changes indicative of sleepiness. Conclusions With a normal night’s sleep, effectively treated older men with OSA drive as safely as healthy men of the same age. However, after restricted sleep, driving impairment is worse than that of controls. This suggests that, although successful CPAP treatment can alleviate potential detrimental effects of OSA on monotonous driving following normal sleep, these patients remain more vulnerable to sleep restriction.