991 resultados para Rayleigh Random Variables
Resumo:
The objective of this work was to develop and validate linear regression models to estimate the production of dry matter by Tanzania grass (Megathyrsus maximus, cultivar Tanzania) as a function of agrometeorological variables. For this purpose, data on the growth of this forage grass from 2000 to 2005, under dry‑field conditions in São Carlos, SP, Brazil, were correlated to the following climatic parameters: minimum and mean temperatures, degree‑days, and potential and actual evapotranspiration. Simple linear regressions were performed between agrometeorological variables (independent) and the dry matter accumulation rate (dependent). The estimates were validated with independent data obtained in São Carlos and Piracicaba, SP, Brazil. The best statistical results in the development and validation of the models were obtained with the agrometeorological parameters that consider thermal and water availability effects together, such as actual evapotranspiration, accumulation of degree‑days corrected by water availability, and the climatic growth index, based on average temperature, solar radiation, and water availability. These variables can be used in simulations and models to predict the production of Tanzania grass.
Resumo:
Abstract
Resumo:
Inference of Markov random field images segmentation models is usually performed using iterative methods which adapt the well-known expectation-maximization (EM) algorithm for independent mixture models. However, some of these adaptations are ad hoc and may turn out numerically unstable. In this paper, we review three EM-like variants for Markov random field segmentation and compare their convergence properties both at the theoretical and practical levels. We specifically advocate a numerical scheme involving asynchronous voxel updating, for which general convergence results can be established. Our experiments on brain tissue classification in magnetic resonance images provide evidence that this algorithm may achieve significantly faster convergence than its competitors while yielding at least as good segmentation results.
Resumo:
In soccer, dead-ball moves are those in which the ball is returned to play from a stationary position following an interruption of play. The aim of this study was to analyse the effectiveness of one such dead-ball move, namely corner kicks, and to identify the key variables that determine the success of a shot or header following a corner, thereby enabling a model of successful corner kicks to be proposed. We recorded 554 corner kicks performed during the 2010 World Cup in South Africa and carried out a univariate, bivariate and multivariate analysis of the data. The results indicated that corners were of limited effectiveness in terms of the success of subsequent shots or headers. The analysis also revealed a series of variables that were significantly related to one another, and this enabled us to propose an explanatory model. Although this model had limited explanatory power, it nonetheless helps to understand the execution of corner kicks in practical terms.
Resumo:
We report Monte Carlo results for a nonequilibrium Ising-like model in two and three dimensions. Nearest-neighbor interactions J change sign randomly with time due to competing kinetics. There follows a fast and random, i.e., spin-configuration-independent diffusion of Js, of the kind that takes place in dilute metallic alloys when magnetic ions diffuse. The system exhibits steady states of the ferromagnetic (antiferromagnetic) type when the probability p that J>0 is large (small) enough. No counterpart to the freezing phenomena found in quenched spin glasses occurs. We compare our results with existing mean-field and exact ones, and obtain information about critical behavior.
Genetic diversity between improved banana diploids using canonical variables and the Ward-MLM method
Resumo:
The objective of this work was to estimate the genetic diversity of improved banana diploids using data from quantitative analysis and from simple sequence repeats (SSR) marker, simultaneously. The experiment was carried out with 33 diploids, in an augmented block design with 30 regular treatments and three common ones. Eighteen agronomic characteristics and 20 SSR primers were used. The agronomic characteristics and the SSR were analyzed simultaneously by the Ward-MLM, cluster, and IML procedures. The Ward clustering method considered the combined matrix obtained by the Gower algorithm. The Ward-MLM procedure identified three ideal groups (G1, G2, and G3) based on pseudo-F and pseudo-t² statistics. The dendrogram showed relative similarity between the G1 genotypes, justified by genealogy. In G2, 'Calcutta 4' appears in 62% of the genealogies. Similar behavior was observed in G3, in which the 028003-01 diploid is the male parent of the 086079-10 and 042079-06 genotypes. The method with canonical variables had greater discriminatory power than Ward-MLM. Although reduced, the genetic variability available is sufficient to be used in the development of new hybrids.
Resumo:
The objective of this work was to assess the degree of multicollinearity and to identify the variables involved in linear dependence relations in additive-dominant models. Data of birth weight (n=141,567), yearling weight (n=58,124), and scrotal circumference (n=20,371) of Montana Tropical composite cattle were used. Diagnosis of multicollinearity was based on the variance inflation factor (VIF) and on the evaluation of the condition indexes and eigenvalues from the correlation matrix among explanatory variables. The first model studied (RM) included the fixed effect of dam age class at calving and the covariates associated to the direct and maternal additive and non-additive effects. The second model (R) included all the effects of the RM model except the maternal additive effects. Multicollinearity was detected in both models for all traits considered, with VIF values of 1.03 - 70.20 for RM and 1.03 - 60.70 for R. Collinearity increased with the increase of variables in the model and the decrease in the number of observations, and it was classified as weak, with condition index values between 10.00 and 26.77. In general, the variables associated with additive and non-additive effects were involved in multicollinearity, partially due to the natural connection between these covariables as fractions of the biological types in breed composition.
Resumo:
Genetic variants influence the risk to develop certain diseases or give rise to differences in drug response. Recent progresses in cost-effective, high-throughput genome-wide techniques, such as microarrays measuring Single Nucleotide Polymorphisms (SNPs), have facilitated genotyping of large clinical and population cohorts. Combining the massive genotypic data with measurements of phenotypic traits allows for the determination of genetic differences that explain, at least in part, the phenotypic variations within a population. So far, models combining the most significant variants can only explain a small fraction of the variance, indicating the limitations of current models. In particular, researchers have only begun to address the possibility of interactions between genotypes and the environment. Elucidating the contributions of such interactions is a difficult task because of the large number of genetic as well as possible environmental factors.In this thesis, I worked on several projects within this context. My first and main project was the identification of possible SNP-environment interactions, where the phenotypes were serum lipid levels of patients from the Swiss HIV Cohort Study (SHCS) treated with antiretroviral therapy. Here the genotypes consisted of a limited set of SNPs in candidate genes relevant for lipid transport and metabolism. The environmental variables were the specific combinations of drugs given to each patient over the treatment period. My work explored bioinformatic and statistical approaches to relate patients' lipid responses to these SNPs, drugs and, importantly, their interactions. The goal of this project was to improve our understanding and to explore the possibility of predicting dyslipidemia, a well-known adverse drug reaction of antiretroviral therapy. Specifically, I quantified how much of the variance in lipid profiles could be explained by the host genetic variants, the administered drugs and SNP-drug interactions and assessed the predictive power of these features on lipid responses. Using cross-validation stratified by patients, we could not validate our hypothesis that models that select a subset of SNP-drug interactions in a principled way have better predictive power than the control models using "random" subsets. Nevertheless, all models tested containing SNP and/or drug terms, exhibited significant predictive power (as compared to a random predictor) and explained a sizable proportion of variance, in the patient stratified cross-validation context. Importantly, the model containing stepwise selected SNP terms showed higher capacity to predict triglyceride levels than a model containing randomly selected SNPs. Dyslipidemia is a complex trait for which many factors remain to be discovered, thus missing from the data, and possibly explaining the limitations of our analysis. In particular, the interactions of drugs with SNPs selected from the set of candidate genes likely have small effect sizes which we were unable to detect in a sample of the present size (<800 patients).In the second part of my thesis, I performed genome-wide association studies within the Cohorte Lausannoise (CoLaus). I have been involved in several international projects to identify SNPs that are associated with various traits, such as serum calcium, body mass index, two-hour glucose levels, as well as metabolic syndrome and its components. These phenotypes are all related to major human health issues, such as cardiovascular disease. I applied statistical methods to detect new variants associated with these phenotypes, contributing to the identification of new genetic loci that may lead to new insights into the genetic basis of these traits. This kind of research will lead to a better understanding of the mechanisms underlying these pathologies, a better evaluation of disease risk, the identification of new therapeutic leads and may ultimately lead to the realization of "personalized" medicine.
Resumo:
This paper suggests a method for obtaining efficiency bounds in models containing either only infinite-dimensional parameters or both finite- and infinite-dimensional parameters (semiparametric models). The method is based on a theory of random linear functionals applied to the gradient of the log-likelihood functional and is illustrated by computing the lower bound for Cox's regression model
Resumo:
The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524) of test-day milk yield (TDMY) from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects), whereas the contemporary group, calving age (linear and quadratic effects) and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Resumo:
In this paper, we prove that a self-avoiding walk of infinite length provides a structure that would resolve Olbers' paradox. That is, if the stars of a universe were distributed like the vertices of an infinite random walk with each segment length of about a parsec, then the night sky could be as dark as actually observed on the Earth. Self-avoiding random walk structure can therefore resolve the Olbers' paradox even in a static universe.
Resumo:
PURPOSE: Low tidal volume ventilation and permissive hypercapnia are required in patients with sepsis complicated by ARDS. The effects of hypercapnia on tissue oxidative metabolism in this setting are unknown. We therefore determined the effects of moderate hypercapnia on markers of systemic and splanchnic oxidative metabolism in an animal model of endotoxemia. METHODS: Anesthetized rats maintained at a PaCO(2) of 30, 40 or 60 mmHg were challenged with endotoxin. A control group (PaCO(2) 40 mmHg) received isotonic saline. Hemodynamic variables, arterial lactate, pyruvate, and ketone bodies were measured at baseline and after 4 h. Tissue adenosine triphosphate (ATP) and lactate were measured in the small intestine and the liver after 4 h. RESULTS: Endotoxin resulted in low cardiac output, increased lactate/pyruvate ratio and decreased ketone body ratio. These changes were not influenced by hypercapnia, but were more severe with hypocapnia. In the liver, ATP decreased and lactate increased independently from PaCO(2) after endotoxin. In contrast, the drop of ATP and the rise in lactate triggered by endotoxin in the intestine were prevented by hypercapnia. CONCLUSIONS: During endotoxemia in rats, moderate hypercapnia prevents the deterioration of tissue energetics in the intestine.
Resumo:
BACKGROUND: Workers with persistent disabilities after orthopaedic trauma may need occupational rehabilitation. Despite various risk profiles for non-return-to-work (non-RTW), there is no available predictive model. Moreover, injured workers may have various origins (immigrant workers), which may either affect their return to work or their eligibility for research purposes. The aim of this study was to develop and validate a predictive model that estimates the likelihood of non-RTW after occupational rehabilitation using predictors which do not rely on the worker's background. METHODS: Prospective cohort study (3177 participants, native (51%) and immigrant workers (49%)) with two samples: a) Development sample with patients from 2004 to 2007 with Full and Reduced Models, b) External validation of the Reduced Model with patients from 2008 to March 2010. We collected patients' data and biopsychosocial complexity with an observer rated interview (INTERMED). Non-RTW was assessed two years after discharge from the rehabilitation. Discrimination was assessed by the area under the receiver operating curve (AUC) and calibration was evaluated with a calibration plot. The model was reduced with random forests. RESULTS: At 2 years, the non-RTW status was known for 2462 patients (77.5% of the total sample). The prevalence of non-RTW was 50%. The full model (36 items) and the reduced model (19 items) had acceptable discrimination performance (AUC 0.75, 95% CI 0.72 to 0.78 and 0.74, 95% CI 0.71 to 0.76, respectively) and good calibration. For the validation model, the discrimination performance was acceptable (AUC 0.73; 95% CI 0.70 to 0.77) and calibration was also adequate. CONCLUSIONS: Non-RTW may be predicted with a simple model constructed with variables independent of the patient's education and language fluency. This model is useful for all kinds of trauma in order to adjust for case mix and it is applicable to vulnerable populations like immigrant workers.
Resumo:
Teorian mukaan täydellisen kilpailun päästöoikeuskauppamarkkinoilla päästöoikeuden hinta muodostuu markkinoilla vallitsevan päästöjen vähentämisen rajakustannuksen perusteella. Euroopan päästökauppamarkkinoilla päästöjen vähentämisen kustannuksia nostavat suhteellisen lyhyet päästökauppajaksot ja epävarmuus järjestelmän jatkuvuudesta. Toisaalta päästökaupan osallistujien yhteenlaskettu päästöjen vähentämisen tarve lienee suhteellisen vähäinen ellei olematon ensimmäisellä päästökauppajaksolla. Euroopan päästökauppamarkkinoilla päästöjen vähentämisen tarve ja päästöjenvähentämisen kustannukset ovat osittain riippuvaisia muuttuvista tekijöistä. Päästöoikeuden hintaan voivat vaikuttaa päästökauppajakson aikana tapahtuva teollisuuden suhdannevaihtelu, polttoaineiden hintojen heilahtelut sekä säätilojen vaihtelu. Päästökaupan ensimmäisinä kuukausina päästöoikeuden hintakehityksellä on ollut yhteyksiä tekijöihin, joiden muutosten tulisikin vaikuttaa päästökauppamarkkinoiden tasapainoon. Näitä tekijöitä ovat esimerkiksi polttoainemarkkinoiden ja sähkömarkkinoiden hintakehitys sekä vaihtelut säätiloissa.