991 resultados para Radiology, nuclear medicine


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Preclinical and clinical studies have indicated that somatostatin receptor (sst)-expressing tumors demonstrate higher uptake of radiolabeled sst antagonists than of sst agonists. In 4 consecutive patients with advanced neuroendocrine tumors, we evaluated whether treatment with (177)Lu-labeled sst antagonists is feasible. METHODS After injection of approximately 1 GBq of (177)Lu-DOTA-[Cpa-c(DCys-Aph(Hor)-DAph(Cbm)-Lys-Thr-Cys)-DTyr-NH2] ((177)Lu-DOTA-JR11) and (177)Lu-DOTATATE, 3-dimensional voxel dosimetry analysis based on SPECT/CT was performed. A higher tumor-to-organ dose ratio for (177)Lu-DOTA-JR11 than for (177)Lu-DOTATATE was the prerequisite for treatment with (177)Lu-DOTA-JR11. RESULTS Reversible minor adverse effects of (177)Lu-DOTA-JR11 were observed. (177)Lu-DOTA-JR11 showed a 1.7-10.6 times higher tumor dose than (177)Lu-DOTATATE. At the same time, the tumor-to-kidney and tumor-to-bone marrow dose ratio was 1.1-7.2 times higher. All 4 patients were treated with (177)Lu-DOTA-JR11, resulting in partial remission in 2 patients, stable disease in 1 patient, and mixed response in the other patient. CONCLUSION Treatment of neuroendocrine tumors with radiolabeled sst antagonists is clinically feasible and may have a significant impact on peptide receptor radionuclide therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION The gastrin-releasing peptide receptor (GRPR) was shown to be expressed with high density on several types of cancers. Radiolabeled peptides for imaging and targeted radionuclide therapy have been developed. In this study, we evaluated the potential of statine-based bombesin antagonists, conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) through oligoethyleneglycol spacers, labeled with (177)Lu and we determined the effect of polyethyleneglycol (PEG) spacer length on in vitro and in vivo properties. METHODS The bombesin antagonists were synthesized on solid phase using Fmoc chemistry; the spacers Fmoc-dPEGx-OH (x=2, 4, 6 and 12) and the DOTA(tBu)3 were coupled using a standard procedure. The peptides were labeled with (177)Lu and evaluated in vitro (lipophilicity, serum stability, internalization and binding affinity assays). Biodistribution studies were performed in PC-3 tumor-bearing nude mice. RESULTS The solid-phase synthesis was straightforward with an overall yield ranging from 30% to 35% based on the first Fmoc cleavage. The hydrophilicity increased with spacer length (logD: -1.95 vs -2.22 of PEG2 and PEG12 analogs, respectively). There is a tendency of increased serum stability by increasing the spacer length (T1/2=2464 and 58420 for PEG2 and PEG6 analogs, respectively) which seems to reverse with the PEG12 analog. The IC50 values are similar with the only significant difference of the PEG12 analog. The (177)Lu-labeled PEG4 and PEG6 conjugates showed similar pharmacokinetic with high tumor uptake and excellent tumor-to-kidney ratios (7.8 and 9.7 at 4h for the PEG4 and PEG6 derivatives, respectively). The pancreas uptake was relatively high at 1h but it shows fast washout (0.46%0.02% IA/g and 0.29%0.08% IA/g already at 4h). CONCLUSION Among all the studied analogs the PEG4 and PEG6 showed significantly better properties. The very high tumor-to-non-target organ ratios, in particular tumor-to-kidney ratios, already at early time point will be important in regard to safety concerning kidney toxicity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new family of peptide receptors, the incretin receptor family, overexpressed on many neuroendocrine tumors (NETs) is of great importance because it may enable the in vivo peptide-based receptor targeting of a category of NETs that does not express the somatostatin receptor. Impressive in vivo diagnostic data were published for glucagonlike peptide 1 receptor-targeting radiopeptides. Recently, promising in vitro data have appeared for the second member of the incretin family, the glucose-dependent insulinotropic polypeptide (GIP) receptor. This prompted us to develop and evaluate a new class of radioligands with the potential to be used for the in vivo targeting of GIP receptor-positive tumors. METHODS GIP(1-42) was modified C-terminally, and the truncated peptides [Lys(30)(aminohexanoic acid [Ahx]-DOTA)]GIP(1-30)NH2 (EG1), [Lys(16)(Ahx-DOTA)]GIP(1-30)NH2 (EG2), and [Nle(14), Lys(30)(Ahx-DOTA)]GIP(1-30)NH2 (EG4) were conjugated with Ahx-DOTA via the Lys(16) and Lys(30) side chains. Their inhibitory concentration of 50% (IC50) was determined using [(125)I-Tyr(10)]GIP(1-30) as radioligand and GIP(1-30) as control peptide. The DOTA conjugates were labeled with (111)In and (68)Ga. In vitro evaluation included saturation and internalization studies using the pancreatic endocrine cell line INR1G9 transfected with the human GIP receptor (INR1G9-hGIPr). The in vivo evaluation consisted of biodistribution and PET imaging studies on nude mice bearing INR1G9-hGIPr tumors. RESULTS Binding studies (IC50 and saturation studies) showed high affinity toward GIP receptor for the GIP conjugates. Specific in vitro internalization was found, and almost the entire cell-associated activity was internalized (>90% of the cell-bound activity), supporting the agonist potency of the (111)In-vectors. (111)In-EG4 and (68)Ga-EG4 were shown to specifically target INR1G9-hGIPr xenografts, with tumor uptake of 10.4% 2.2% and 17.0% 4.4% injected activity/g, 1 h after injection, respectively. Kidneys showed the highest uptake, which could be reduced by approximately 40%-50% with a modified-fluid-gelatin plasma substitute or an inhibitor of the serine protease dipeptidyl peptidase 4. The PET images clearly visualized the tumor. CONCLUSION The evaluation of EG4 as a proof-of-principle radioligand indicated the feasibility of imaging GIP receptor-positive tumors. These results prompt us to continue the development of this family of radioligands for imaging of a broad spectrum of NETs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the (125)iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer (125)I-GLP-1(7-36)amide. METHODS Receptor autoradiography studies with (125)I-GLP-1(7-36)amide agonist or (125)I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. RESULTS The antagonist (125)I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer (125)I-GLP-1(7-36)amide. For comparison, (125)I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. CONCLUSION The GLP-1 receptor antagonist exendin(9-39) labelled with (125)I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This document describes the guideline for peptide receptor radionuclide therapy (PRRT) published by the German Society of Nuclear Medicine (DGN) and accepted by the Association of the Scientific Medical Societies in Germany (AWMF) to be included in the official AWMF Guideline Registry. These recommendations are a prerequisite for the quality management in the treatment of patients with somatostatin receptor expressing tumours using PRRT. They are aimed at guiding nuclear medicine specialists in selecting likely candidates to receive PRRT and to deliver the treatment in a safe and effective manner. The recommendations are based on an interdisciplinary consensus. The document contains background information and definitions and covers the rationale, indications and contraindications for PRRT. Essential topics are the requirements for institutions performing the therapy, e.g. presence of an expert for medical physics, intense cooperation with all colleagues involved in the treatment of a patient, and a certificate of instruction in radiochemical labelling and quality control are required. Furthermore, it is specified which patient data have to be available prior to performance of therapy and how treatment has to be carried out technically. Here, quality control and documentation of labelling are of great importance. After treatment, clinical quality control is mandatory (work-up of therapy data and follow-up of patients). Essential elements of follow-up are specified in detail. The complete treatment inclusive after-care has to be realised in close cooperation with the involved medical disciplines. Generally, the decision for PRRT should be undertaken within the framework of a multi-disciplinary tumour board.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We aimed to explore the effects of (90)Y-DOTATOC and (90)Y-DOTATOC plus (177)Lu-DOTATOC on survival of patients with metastasized gastrinoma. Patients with progressive metastasized gastrinoma were treated with repeated cycles of (90)Y-DOTATOC or with cycles alternating between (90)Y-DOTATOC and (177)Lu-DOTATOC until tumor progression or permanent toxicity. Multivariable Cox regression analyses were used to study predictors of survival. A total of 36 patients were enrolled; 30 patients received (90)Y-DOTATOC (median activity per patient 11.8GBq; range: 6.1-62.2GBq) and 6 patients received (90)Y-DOTATOC plus (177)Lu-DOTATOC (median activity per patient: 14.8GBq; range: 7.4-14.8GBq). Response was found in 26 patients (72.2%), including morphological (n=12, 33.3%), biochemical (n=14, 38.9%) and/or clinical response (n=6, 16.2%). A total of 21 patients (58.3%) experienced hematotoxicity grade 1/2, while 1 patient (2.8%) experienced hematotoxicity grade 3; no grade 4 hematotoxicity occurred. Furthermore, 2 patients (5.6%) developed grade 4 renal toxicity; no grade 5 renal toxicity occurred. Responders had a significantly longer median survival from time of enrollment than non-responders (45.1 months, range: 37.1-53.1 months vs. 12.6 months, range: 11.0-14.2, hazard ratio: 0.12 (0.027-0.52), p=0.005). Additionally, there was a trend towards longer median survival with (90)Y-DOTATOC plus (177)Lu-DOTATOC as compared to (90)Y-DOTATOC alone (60.2 months, range: 19.8-100.6 months vs. 27.0 months, range: 4.0-50.0, hazard ratio: 0.21 (0.01-3.98), p=0.16). Response to (90)Y-DOTATOC and (90)Y-DOTATOC plus (177)Lu-DOTATOC therapy is associated with a longer survival in patients with metastasized gastrinoma. Both treatment regimens are promising tools for management of progressive gastrinoma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

UNLABELLED (111)In-DOTA-exendin-4 SPECT/CT has been shown to be highly efficient in the detection of insulinomas. We aimed at determining whether novel PET/CT imaging with [Nle(14),Lys(40)(Ahx-DOTA-(68)Ga)NH2]exendin-4 ((68)Ga-DOTA-exendin-4) is feasible and sensitive in detecting benign insulinomas. METHODS (68)Ga-DOTA-exendin-4 PET/CT and (111)In-DOTA-exendin-4 SPECT/CT were performed in a randomized cross-over order on 5 patients with endogenous hyperinsulinemic hypoglycemia. The gold standard for comparison was the histologic diagnosis after surgery. RESULTS In 4 patients histologic diagnosis confirmed a benign insulinoma, whereas one patient refused surgery despite a positive (68)Ga-DOTA-exendin-4 PET/CT scan. In 4 of 5 patients, previously performed conventional imaging (CT or MR imaging) was not able to localize the insulinoma. (68)Ga-DOTA-exendin-4 PET/CT correctly identified the insulinoma in 4 of 4 patients, whereas (111)In-DOTA-exendin-4 SPECT/CT correctly identified the insulinoma in only 2 of 4 patients. CONCLUSION These preliminary data suggest that the use of (68)Ga-DOTA-exendin-4 PET/CT in detecting hidden insulinomas is feasible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

UNLABELLED A high proportion of gut and bronchial neuroendocrine tumors (NETs) overexpresses somatostatin receptors, especially the sst2 subtype. It has also recently been observed that incretin receptors, namely glucagonlike peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) receptors, can be overexpressed in gut and bronchial NETs. However, because not all tumors can express these receptors in sufficient amounts, in vivo imaging with a single radioligand may not always be successful. We therefore evaluated with in vitro methods whether a cocktail of radioligands targeting these 3 receptors would improve tumor labeling. METHODS In vitro receptor autoradiography was performed on 55 NETs, comparing in each successive section of tumor the binding with a single radioligand, either (125)I-Tyr(3)-octreotide, (125)I-GLP-1(7-36)amide, or (125)I-GIP(1-30), with the binding using a cocktail of all 3 radioligands, given concomitantly under identical experimental conditions. RESULTS Using the cocktail of radioligands, all tumors without exception showed moderate to very high binding, with a receptor density corresponding to 1,000-10,000 dpm/mg of tissue; conversely, single-ligand binding, although identifying most tumors as receptor-positive, failed to detect receptors or measured only a low density of receptors below 1,000 dpm/mg in a significant number of tumors. In addition, the cocktail of radioligands always provided a homogeneous labeling of the whole tumor, whereas single radioligands occasionally showed heterogeneous labeling. CONCLUSION The study suggests that the use of a cocktail of 3 radioligands binding to somatostatin receptors, GLP-1 receptors, and GIP receptors would allow detecting virtually all NETs and labeling them homogeneously in vivo, representing a significant improvement for imaging and therapy in NETs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIM To evaluate the diagnostic value (sensitivity, specificity) of positron emission mammography (PEM) in a single site non-interventional study using the maximum PEM uptake value (PUVmax). PATIENTS, METHODS In a singlesite, non-interventional study, 108 patients (107 women, 1 man) with a total of 151 suspected lesions were scanned with a PEM Flex Solo II (Naviscan) at 90 min p.i. with 3.5 MBq 18F-FDG per kg of body weight. In this ROI(region of interest)-based analysis, maximum PEM uptake value (PUV) was determined in lesions, tumours (PUVmaxtumour), benign lesions (PUVmaxnormal breast) and also in healthy tissues on the contralateral side (PUVmaxcontralateral breast). These values were compared and contrasted. In addition, the ratios of PUVmaxtumour/PUVmaxcontralateral breast and PUVmaxnormal breast/PUVmaxcontralateral breast were compared. The image data were interpreted independently by two experienced nuclear medicine physicians and compared with histology in cases of suspected carcinoma. RESULTS Based on a criteria of PUV>1.9, 31 out of 151 lesions in the patient cohort were found to be malignant (21%). A mean PUVmaxtumour of 3.78 2.47 was identified in malignant tumours, while a mean PUVmaxnormal breast of 1.17 0.37 was reported in the glandular tissue of the healthy breast, with the difference being statistically significant (p < 0.001). Similarly, the mean ratio between tumour and healthy glandular tissue in breast cancer patients (3.15 1.58) was found to be significantly higher than the ratio for benign lesions (1.17 0.41, p < 0.001). CONCLUSION PEM is capable of differentiating breast tumours from benign lesions with 100% sensitivity along with a high specificity of 96%, when a threshold of PUVmax >1.9 is applied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE Somatostatin receptor-targeted radiopeptide therapy is commonly performed using single radioisotopes. We evaluated the benefits and harms of combining radioisotopes in radiopeptide therapy in patients with neuroendocrine tumor. METHODS Using multivariable-adjusted survival analyses and competing risk analyses we evaluated outcomes in patients with neuroendocrine tumor receiving (90)Y-DOTATOC, (177)Lu-DOTATOC or their combination. RESULTS (90)Y-DOTATOC plus (177)Lu-DOTATOC treatment was associated with longer survival than (90)Y-DOTATOC (66.1 vs. 47.5 months; n=1,358; p<0.001) or (177)Lu-DOTATOC alone (66.1 vs. 45.5 months; n=390; p<0.001). (177)Lu-DOTATOC was associated with longer survival than (90)Y-DOTATOC in patients with solitary lesions (HR 0.3, range 0.1 - 0.7; n=153; p=0.005), extrahepatic metastases (HR 0.5, range 0.3 - 0.9; n=256; p=0.029) and metastases with low uptake (HR 0.1, range 0.05 - 0.4; n=113; p=0.001). (90)Y-DOTATOC induced higher hematotoxicity rates than combined treatment (9.5% vs. 4.0%, p=0.005) or (177)Lu-DOTATOC (9.5 vs. 1.4%, p=0.002). Renal toxicity was similar among the treatments. CONCLUSIONS Using (90)Y and (177)Lu might facilitate tailoring radiopeptide therapy and improve survival in patients with neuroendocrine tumors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

UNLABELLED The purpose of this study was to evaluate the reproducibility of a new software based analysing system for ventilation/perfusion single-photon emission computed tomography/computed tomography (V/P SPECT/CT) in patients with pulmonary emphysema and to compare it to the visual interpretation. PATIENTS, MATERIAL AND METHODS 19 patients (mean age: 68.1 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. Data were analysed by two independent observers in visual interpretation (VI) and by software based analysis system (SBAS). SBAS PMOD version 3.4 (Technologies Ltd, Zurich, Switzerland) was used to assess counts and volume per lung lobe/per lung and to calculate the count density per lung, lobe ratio of counts and ratio of count density. VI was performed using a visual scale to assess the mean counts per lung lobe. Interobserver variability and association for SBAS and VI were analysed using Spearman's rho correlation coefficient. RESULTS Interobserver agreement correlated highly in perfusion (rho: 0.982, 0.957, 0.90, 0.979) and ventilation (rho: 0.972, 0.924, 0.941, 0.936) for count/count density per lobe and ratio of counts/count density in SBAS. Interobserver agreement correlated clearly for perfusion (rho: 0.655) and weakly for ventilation (rho: 0.458) in VI. CONCLUSIONS SBAS provides more reproducible measures than VI for the relative tracer uptake in V/P SPECT/CTs in patients with pulmonary emphysema. However, SBAS has to be improved for routine clinical use.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE To evaluate the utility of attenuation correction (AC) of V/P SPECT images for patients with pulmonary emphysema. MATERIALS AND METHODS Twenty-one patients (mean age 67.6years) with pulmonary emphysema who underwent V/P SPECT/CT were included. AC/non-AC V/P SPECT images were compared visually and semiquantitatively. Visual comparison of AC/non-AC images was based on a 5-point likert scale. Semiquantitative comparison assessed absolute counts per lung (aCpLu) and lung lobe (aCpLo) for AC/non-AC images using software-based analysis; percentage counts (PC=(aCpLo/aCpLu)100) were calculated. Correlation between AC/non-AC V/P SPECT images was analyzed using Spearman's rho correlation coefficient; differences were tested for significance with the Wilcoxon rank sum test. RESULTS Visual analysis revealed high conformity for AC and non-AC V/P SPECT images. Semiquantitative analysis of PC in AC/non-AC images had an excellent correlation and showed no significant differences in perfusion (=0.986) or ventilation (=0.979, p=0.809) SPECT/CT images. CONCLUSION AC of V/P SPECT images for lung lobe-based function imaging in patients with pulmonary emphysema do not improve visual or semiquantitative image analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CONTEXT Radiolabelled choline positron emission tomography has changed the management of prostate cancer patients. However, new emerging radiopharmaceutical agents, like radiolabelled prostate specific membrane antigen, and new promising hybrid imaging will begin new challenges in the diagnostic field. OBJECTIVE The continuous evolution in nuclear medicine has led to the improvement in the detection of recurrent prostate cancer (PCa), particularly distant metastases. New horizons have been opened for radiolabelled choline positron emission tomography (PET)/computed tomography (CT) as a guide for salvage therapy or for the assessment of systemic therapies. In addition, new tracers and imaging tools have been recently tested, providing important information for the management of PCa patients. Herein we discuss: (1) the available evidence in literature on radiolabelled choline PET and their recent indications, (2) the role of alternative radiopharmaceutical agents, and (3) the advantages of a recent hybrid imaging device (PET/magnetic resonance imaging) in PCa. EVIDENCE ACQUISITION Data from recently published (2010-2015), original articles concerning the role of choline PET/CT, new emerging radiotracers, and a new imaging device are analysed. This review is reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. EVIDENCE SYNTHESIS In the restaging phase, the detection rate of choline PET varies between 4% and 97%, mainly depending on the site of recurrence and prostate-specific antigen levels. Both 68gallium (68Ga)-prostate specific membrane antigen and 18F-fluciclovine are shown to be more accurate in the detection of recurrent disease as compared with radiolabelled choline PET/CT. Particularly, Ga68-PSMA has a detection rate of 50% and 68%, respectively for prostate-specific antigen levels < 0.5ng/ml and 0.5-2ng/ml. Moreover, 68Ga- PSMA PET/magnetic resonance imaging demonstrated a particularly higher accuracy in detecting PCa than PET/CT. New tracers, such as radiolabelled bombesin or urokinase-type plasminogen activator receptor, are promising, but few data in clinical practice are available today. CONCLUSIONS Some limitations emerge from the published papers, both for radiolabelled choline PET/CT and also for new radiopharmaceutical agents. Efforts are still needed to enhance the impact of published data in the world of oncology, in particular when new radiopharmaceuticals are introduced into the clinical arena. PATIENT SUMMARY In the present review, the authors summarise the last evidences in clinical practice for the assessment of prostate cancer, by using nuclear medicine modalities, like positron emission tomography/computed tomography and positron emission tomography/magnetic resonance imaging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La relacin entre la ingeniera y la medicina cada vez se est haciendo ms estrecha, y debido a esto se ha creado una nueva disciplina, la bioingeniera, mbito en el que se centra el proyecto. Este mbito cobra gran inters debido al rpido desarrollo de nuevas tecnologas que en particular permiten, facilitan y mejoran la obtencin de diagnsticos mdicos respecto de los mtodos tradicionales. Dentro de la bioingeniera, el campo que est teniendo mayor desarrollo es el de la imagen mdica, gracias al cual se pueden obtener imgenes del interior del cuerpo humano con mtodos no invasivos y sin necesidad de recurrir a la ciruga. Mediante mtodos como la resonancia magntica, rayos X, medicina nuclear o ultrasonidos, se pueden obtener imgenes del cuerpo humano para realizar diagnsticos. Para que esas imgenes puedan ser utilizadas con ese fin hay que realizar un correcto tratamiento de stas mediante tcnicas de procesado digital. En se mbito del procesado digital de las imgenes mdicas es en el que se ha realizado este proyecto. Gracias al desarrollo del tratamiento digital de imgenes con mtodos de extraccin de informacin, mejora de la visualizacin o resaltado de rasgos de inters de las imgenes, se puede facilitar y mejorar el diagnstico de los especialistas. Por todo esto en una poca en la que se quieren automatizar todos los procesos para mejorar la eficacia del trabajo realizado, el automatizar el procesado de las imgenes para extraer informacin con mayor facilidad, es muy til. Actualmente una de las herramientas ms potentes en el tratamiento de imgenes mdicas es Matlab, gracias a su toolbox de procesado de imgenes. Por ello se eligi este software para el desarrollo de la parte prctica de este proyecto, su potencia y versatilidad simplifican la implementacin de algoritmos. Este proyecto se estructura en dos partes. En la primera se realiza una descripcin general de las diferentes modalidades de obtencin de imgenes mdicas y se explican los diferentes usos de cada mtodo, dependiendo del campo de aplicacin. Posteriormente se hace una descripcin de las tcnicas ms importantes de procesado de imagen digital que han sido utilizadas en el proyecto. En la segunda parte se desarrollan cuatro aplicaciones en Matlab para ejemplificar el desarrollo de algoritmos de procesado de imgenes mdicas. Dichas implementaciones demuestran la aplicacin y utilidad de los conceptos explicados anteriormente en la parte terica, como la segmentacin y operaciones de filtrado espacial de la imagen, as como otros conceptos especficos. Las aplicaciones ejemplo desarrolladas han sido: obtencin del porcentaje de metstasis de un tejido, diagnstico de las deformidades de la columna vertebral, obtencin de la MTF de una cmara de rayos gamma y medida del rea de un fibroadenoma de una ecografa de mama. Por ltimo, para cada una de las aplicaciones se detallar su utilidad en el campo de la imagen mdica, los resultados obtenidos y su implementacin en una interfaz grfica para facilitar su uso. ABSTRACT. The relationship between medicine and engineering is becoming closer than ever giving birth to a recently appeared science field: bioengineering. This project is focused on this subject. This recent field is becoming more and more important due to the fast development of new technologies that provide tools to improve disease diagnosis, with regard to traditional procedures. In bioengineering the fastest growing field is medical imaging, in which we can obtain images of the inside of the human body without need of surgery. Nowadays by means of the medical modalities of magnetic resonance, X ray, nuclear medicine or ultrasound, we can obtain images to make a more accurate diagnosis. For those images to be useful within the medical field, they should be processed properly with some digital image processing techniques. It is in this field of digital medical image processing where this project is developed. Thanks to the development of digital image processing providing methods for data collection, improved visualization or data highlighting, diagnosis can be eased and facilitated. In an age where automation of processes is much sought, automated digital image processing to ease data collection is extremely useful. One of the most powerful image processing tools is Matlab, together with its image processing toolbox. That is the reason why that software was chosen to develop the practical algorithms in this project. This final project is divided into two main parts. Firstly, the different modalities for obtaining medical images will be described. The different usages of each method according to the application will also be specified. Afterwards we will give a brief description of the most important image processing tools that have been used in the project. Secondly, four algorithms in Matlab are implemented, to provide practical examples of medical image processing algorithms. This implementation shows the usefulness of the concepts previously explained in the first part, such as: segmentation or spatial filtering. The particular applications examples that have been developed are: calculation of the metastasis percentage of a tissue, diagnosis of spinal deformity, approximation to the MTF of a gamma camera, and measurement of the area of a fibroadenoma in an ultrasound image. Finally, for each of the applications developed, we will detail its usefulness within the medical field, the results obtained, and its implementation in a graphical user interface to ensure ease of use.