903 resultados para REACTIVE DYE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sevenfold enhancement of photoconversion efficiency was achieved by incorporation of peripheral ruthenium complexes to a porphyrin dye, generating supramolecular effects capable of playing several key roles (e.g., transferring energy to, inhibiting aggregation, and accepting the hole generated in the porphyrin center after electron injection), providing new insights for the design of better DSSC photosensitizers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated levels of copper have been detected in various types of human cancer cells, such as breast cancer cells, and a number of mechanisms have been proposed to explain the action and influence of copper on tumor progress. In this work, we found that stimulating the proliferation of mammary epithelial MCF7 cells with the high-redox-potential copper complex Cu (GlyGlyHis) is associated with the copper-induced intracellular generation of reactive oxygen species (ROS) that induces lipid peroxidation and causes increased roughness of external cell membranes, which leads to the formation of larger cell domes. The results presented herein provide new insights into the molecular link between copper and the proliferation of breast cancer cells and, consequently, into the mechanism by which changes in redox balance and ROS accumulation regulates cell membrane roughness. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modulation played by reactive oxygen species on the angiotensin II-induced contraction in type I-diabetic rat carotid was investigated. Concentration-response curves for angiotensin II were obtained in endothelium-intact or endothelium-denuded carotid from control or streptozotocin-induced diabetic rats, pre-treated with tiron (superoxide scavenger), PEG-catalase (hydrogen peroxide scavenger), dimethylthiourea (hydroxyl scavenger), apocynin [NAD(P) H oxidase inhibitor], SC560 (cyclooxygenase-1 inhibitor), SC236 (cyclooxygenase-2 inhibitor) or Y-27632 (Rho-kinase inhibitor). Reactive oxygen species were measured by flow cytometry in dihydroethidium (DHE)-loaded endothelial cells. Cyclooxygenase and AT1-receptor expression was assessed by immunohistochemistry. Diabetes increased the angiotensin II-induced contraction but reduced the agonist potency in rat carotid. Endothelium removal, tiron or apocynin restored the angiotensin II-induced contraction in diabetic rat carotid to control levels. PEG-catalase, DMTU or SC560 reduced the angiotensin II-induced contraction in diabetic rat carotid at the same extent. SC236 restored the angiotensin II potency in diabetic rat carotid. Y-27632 reduced the angiotensin II-induced contraction in endothelium-intact or -denuded diabetic rat carotid. Diabetes increased the DHE-fluorescence of carotid endothelial cells. Apocynin reduced the DHE-fluorescence of endothelial cells from diabetic rat carotid to control levels. Diabetes increased the muscular cyclooxygenase-2 expression but reduced the muscular AT1-receptor expression in rat carotid. In summary, hydroxyl radical, hydrogen peroxide and superoxide anion-derived from endothelial NAD(P) H oxidase mediate the hyperreactivity to angiotensin II in type I-diabetic rat carotid, involving the participation of cyclooxygenase-1 and Rho-kinase. Moreover, increased muscular cyclooxygenase-2 expression in type I-diabetic rat carotid seems to be related to the local reduced AT1-receptor expression and the reduced angiotensin II potency. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brossi P.M., Baccarin R.Y.A. & Massoco C.O. 2012 Do blood components affect the production of reactive oxygen species (ROS) by equine synovial cells in vitro? Pesquisa Veterinaria Brasileira 32(12):1355-1360. Departamento de Clinica Medica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Butanta, Sao Paulo, SP 5508-210, Brazil. E-mail: baccarin@ usp.br Blood-derived products are commonly administered to horses and humans to treat many musculoskeletal diseases, due to their potential antioxidant and anti-inflammatory effects. Nevertheless, antioxidant effects have never been shown upon horse synovial fluid cells in vitro. If proved, this could give a new perspective to justify the clinical application of blood-derived products. The aim of the present study was to investigate the antioxidant effects of two blood-derived products - plasma (unconditioned blood product - UBP) and a commercial blood preparation (conditioned blood product - CBP)(4) - upon stimulated equine synovial fluid cells. Healthy tarsocrural joints (60) were tapped to obtain synovial fluid cells; these cells were pooled, processed, stimulated with lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA), and evaluated by flow cytometry for the production of reactive oxygen species (ROS). Upon addition of any blood-derived product here used - UBP and CBP - there was a significant decrease in the oxidative burst of synovial fluid cells (P<0.05). There was no difference between UBP and CBP effects. In conclusion, treatment of stimulated equine synovial cells with either UBP or CBP efficiently restored their redox equilibrium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of pH during hydrolysis of titanium(IV) isopropoxide on the morphological and electronic properties of TiO2 nanoparticles prepared by the sol-gel method is investigated and correlated to the photoelectrochemical parameters of dye-sensitized solar cells (DSCs) based on TiO2 films. Nanoparticles prepared under acid pH exhibit smaller particle size and higher surface area, which result in higher dye loadings and better short-circuit current densities than DSCs based on alkaline TiO2-processed films. On the other hand, the product of charge collection and separation quantum yields in films with TiO2 obtained by alkaline hydrolysis is c. a. 27% higher than for the acid TiO2 films. The combination of acid and alkaline TiO2 nanoparticles as mesoporous layer in DSCs results in a synergic effect with overall efficiencies up to 6.3%, which is better than the results found for devices employing one of the nanoparticles separately. These distinct nanoparticles can be also combined by using the layer-by-layer technique (LbL) to prepare compact TiO2 films applied before the mesoporous layer. DSCs employing photoanodes with 30 TiO2 bilayers have shown efficiencies up to 12% higher than the nontreated photoanode ones. These results can be conveniently used to develop optimized synthetic procedures of TiO2 nanoparticles for several dye-sensitized solar cell applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Procalcitonin (PCT) is an inflammatory marker that has been used as indicator of severe bacterial infection. We evaluated the concentrations of PCT as a marker for systemic infection compared to C-reactive protein (CRP) in patients neutropenic febrile. Methods 52 adult patients were enrolled in the study. Blood sample was collected in order to determine the serum concentrations of PCT, CRP and other hematological parameters at the onset of fever. The patients were divided into 2 groups, one with severe infection (n = 26) and the other in which the patients did not present such an infection (n = 26). Then PCT and CRP concentrations at the fever onset were compared between groups using non parametric statistical tests, ROC curve, sensitivity, specificity, likelihood ratio, and Spearman's correlation coefficient. Results The mean of PCT was significantly higher in the group with severe infection (6.7 ng/mL versus 0.6 ng/mL – p = 0.0075) comparing with CRP. Serum concentrations of 0.245 ng/mL of PCT displayed 100% de sensitivity and 69.2% specificity. PCT concentrations of 2,145 ng/mL presented a likelihood ratio of 13, which was not observed for any concentration of CRP. Conclusion PCT seems to be an useful marker for the diagnosis of systemic infection in febrile neutropenic patients, probably better than CRP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High fat diets and accompanying hepatic steatosis are highly prevalent conditions. Previous work has shown that steatosis is accompanied by enhanced generation of reactive oxygen species (ROS), which may mediate further liver damage. Here we investigated mechanisms leading to enhanced ROS generation following high fat diets (HFD). We found that mitochondria from HFD livers present no differences in maximal respiratory rates and coupling, but generate more ROS specifically when fatty acids are used as substrates. Indeed, many acyl-CoA dehydrogenase isoforms were found to be more highly expressed in HFD livers, although only the very long chain acyl-CoA dehydrogenase (VLCAD) was more functionally active. Studies conducted with permeabilized mitochondria and different chain length acyl-CoA derivatives suggest that VLCAD is also a source of ROS production in mitochondria of HFD animals. This production is stimulated by the lack of NAD+. Overall, our studies uncover VLCAD as a novel, diet-sensitive, source of mitochondrial ROS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports the development of GDE for electrogeneration of H2O2 and their application in the degradation process of Reactive Blue 19 dye. GDE produced by carbon black with 20% polytetrafluoroethylene generated up to 500 mg L-1 of H2O2 through the electrolysis of acidic medium at -0.8 V vs Ag/AgCl. Reactive Blue 19 dye was degraded most efficiently with H2O2 electrogenerated in the presence of Fe(II) ions, leading to removal of 95% of the original color and 39% of TOC at -0.8 V vs Ag/AgCl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ethylene tereftalate) (PET) is a polymer highly susceptible to the hydrolytic reactions that occur during applications and mainly in thermomechanical processing. These reactions lead to the decrease of molecular weight of the polymer, limiting the recycling number of the material. The reactive extrusion of the PET in presence of chain extenders is an alternative to recover mechanical and rheological properties that were depreciated by the polymer degradation. In this study, PET wastes from nonwoven fabrics production were extruded in presence of the secondary stabilizer Irgafos 126 (IRG) on variable concentrations. The results showed that Irgafos 126 increased molecular weight, decreased crystallinity and changed processing behavior of the PET, similarly to the effects produced by the well-known chain extender pyromellitic dianhydride (PMDA), showing that the secondary stabilizer Irgafos 126 can also act as a chain extender for the PET.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive Sputter Magnetron (RSM) is a widely used technique to thin films growing of compounds both, in research laboratories and in industrial processes. The nature of the deposited compound will depend then on the nature of the magnetron target and the nature of the ions generated in the plasma. One important aspect of the problem is the knowledge of the evolution of the film during the process of growing itself. In this work, we present the design, construction of a chamber to be installed in the Huber goniometer in the XRD2 line of LNLS in Campinas, which allows in situ growing kinetic studies of thin films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In calcareous soils, which are a large share of agricultural soils worldwide, iron availability is limited. Consequently, the whole plant physiology is affected, because of the key role of iron in redox metabolism, resulting in reduced crop yield and quality. Peach cultivation is economically important in northern Italy, and is easily subjected to iron chlorosis. The management of iron nutrition in peach includes grafting on bicarbonate-tolerant rootstocks; other forms of management may be expensive and environmentally impacting. Four genotypes, used as rootstocks for peach and characterized by different degrees of tolerance to chlorosis, were tested in vitro on optimal and bicarbonate-enriched medium. Their redox status and antioxidant responses were assayed; the production and possible roles of nitric oxide (NO) and related compounds were also studied. The most sensitive genotypes show a stronger reduction of the antioxidant enzymatic activities and an increased oxidative stress. A high production of NO was found to be associated to resistant genotypes, whereas sensitive genotypes reacted to stress by downregulating nitrosoglutathione reductase activity. Therefore, NO is proposed to improve the internal iron availability, or to stimulate iron intake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le Dye – Sensitized Solar Cells (DSSC) sono attualmente considerate tra le alternative più promettenti al fotovoltaico tradizionale. I ridotti costi di produzione e l’elevata versatilità di utilizzo rappresentano i punti di forza di questi dispositivi innovativi. Ad oggi la ricerca è concentrata prevalentemente sull’incremento delle prestazioni delle DSSC, ottenibile solamente attraverso un miglioramento delle funzioni dei singoli componenti e dell’interazione sinergica tra questi. Tra i componenti, ha recentemente assunto particolare interesse il blocking layer (BL), costituito generalmente da un film sottile di TiO2 depositato sulla superficie dell’anodo (FTO) e in grado di ottimizzare i fenomeni all’interfaccia FTO/TiO2/elettrolita. Nel corso di questo lavoro di tesi si è rivolta l’attenzione prevalentemente sulle caratteristiche del BLs (ad esempio proprietà morfologico – strutturali) cercando di mettere in correlazione il processo di deposizione con le caratteristiche finali del film ottenuto. A questo scopo è stato ottimizzato un processo di deposizione dei film via spin coating, a partire da soluzioni acquosa o alcolica di precursore (TiCl4). I film ottenuti sono stati confrontati con quelli depositati tramite un processo di dip coating riportato in letteratura. I BLs sono stati quindi caratterizzati tramite microscopia (SEM – AFM), spettrofotometria (UV.- Vis) e misure elettrochimiche (CV – EIS). I risultati ottenuti hanno messo in evidenza come i rivestimenti ottenuti da soluzione acquosa di precursore, indipendentemente dalla tecnica di deposizione utilizzata (spin coating o dip coating) diano origine a film disomogenei e scarsamente riproducibili, pertanto non idonei per l’applicazione nelle DSSC. Viceversa, i BLs ottenuti via spin coating dalla soluzione alcolica di TiCl4 sono risultati riproducibili, omogenei, e uniformemente distribuiti sulla superficie di FTO. Infine, l’analisi EIS ha in particolare evidenziato un effettivo aumento della resistenza al trasferimento di carica tra elettrodo FTO ed elettrolita in presenza di questi BLs, fenomeno generalmente associato ad un efficace blocking effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-dimensional multi-component reactive fluid transport algorithm, 1DREACT (Steefel, 1993) was used to investigate different fluid-rock interaction systems. A major short coming of mass transport calculations which include mineral reactions is that solid solutions occurring in many minerals are not treated adequately. Since many thermodynamic models of solid solutions are highly non-linear, this can seriously impact on the stability and efficiency of the solution algorithms used. Phase petrology community saw itself faced with a similar predicament 10 years ago. To improve performance and reliability, phase equilibrium calculations have been using pseudo compounds. The same approach is used here in the first, using the complex plagioclase solid solution as an example. Thermodynamic properties of a varying number of intermediate plagioclase phases were calculated using ideal molecular, Al-avoidance, and non-ideal mixing models. These different mixing models can easily be incorporated into the simulations without modification of the transport code. Simulation results show that as few as nine intermediate compositions are sufficient to characterize the diffusional profile between albite and anorthite. Hence this approach is very efficient, and can be used with little effort. A subsequent chapter reports the results of reactive fluid transport modeling designed to constrain the hydrothermal alteration of Paleoproterozoic sediments of the Southern Lake Superior region. Field observations reveal that quartz-pyrophyllite (or kaolinite) bearing assemblages have been transformed into muscovite-pyrophyllite-diaspore bearing assemblages due to action of fluids migrating along permeable flow channels. Fluid-rock interaction modeling with an initial qtz-prl assemblage and a K-rich fluid simulates the formation of observed mineralogical transformation. The bulk composition of the system evolves from an SiO2-rich one to an Al2O3+K2O-rich one. Simulations show that the fluid flow was up-temperature (e.g. recharge) and that fluid was K-rich. Pseudo compound approach to include solid solutions in reactive transport models was tested in modeling hydrothermal alteration of Icelandic basalts. Solid solutions of chlorites, amphiboles and plagioclase were included as the secondary mineral phases. Saline and fresh water compositions of geothermal fluids were used to investigate the effect of salinity on alteration. Fluid-rock interaction simulations produce the observed mineral transformations. They show that roughly the same alteration minerals are formed due to reactions with both types of fluid which is in agreement with the field observations. A final application is directed towards the remediation of nitrate rich groundwaters. Removal of excess nitrate from groundwater by pyrite oxidation was modeled using the reactive fluid transport algorithm. Model results show that, when a pyrite-bearing, permeable zone is placed in the flow path, nitrate concentration in infiltrating water can be significantly lowered, in agreement with proposals from the literature. This is due to nitrogen reduction. Several simulations investigate the efficiency of systems with different mineral reactive surface areas, reactive barrier zone widths, and flow rates to identify the optimum setup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nature leads, we follow. But nanotechnologists are in hot pursuit, in designing controllable structures that can mimic naturally occurring and artificially synthesized materials on a common platform. The supramolecular chemistry concerns the investigation of nature principles to produce fascinating complexed and functional molecular assemblies, as well as the utilization of these principles to generate novel devices and materials, potentially useful for sensing, catalysis, transport and other applications in medical or engineering science. The work presented in this thesis is a compilation of different synthetic methods to achieve inorganic-organic hybrid nanomaterials. Silicatein, a protein enzyme, which acts both as a catalyst and template for the formation of silica needles in marine sponges, has been used for the biosynthesis of semiconductor metal oxides on surfaces. Silicatein was immobilized on gold (111) surfaces using alkane thiol, as well as on a novel self-assembly of NTA on top of a “cushion” of reactive ester polymer has been successfully employed to make functionalised surfaces. The immobilization of silicatein on surfaces was monitored by surface plasmon spectroscopy, atomic force microscopy and confocal laser scanning microscopy. Surface bound silicatein retains its biocatalytic activity, which was demonstrated by monitoring its hydrocatalytic activity to catalyse the synthesis of biosilica, biotitania, and biozirconia. The synthesis of semiconductor metal oxides was characterized using scanning electron microscopy. This hydrolytic biocatalyst is used to synthesize the gold nanoparticles. The gold nanoparticles are formed by reduction of tetrachloroaurate, AuCl4-, by the action of sulfhydryl groups hidden below the surface groups of the protein. The resulting gold nanoparticles which are stabilized by surface bound silicatein further aggregate to form Au nanocrystals. The shape of the nanocrystals obtained by using recombinant silicatein is controlled through chiral induction by the protein during the nucleation of the nanocrystals. As an extension of this work, TiO2 nanowires were functionalized using polymeric ligand which incorporates the nitrilotriacetic acid (NTA) linker in the back bone to immobilize His-tagged silicatein onto the TiO2 nanowires. The surface bound protein not only retains its original hydrolytic properties, but also acts as a reductant for AuCl4- in the synthesis of hybrid TiO2/silicatein/Au nanocomposites. Functionalized, monocrystalline rutile TiO2 nanorods were prepared from TiCl4 in aqueous solution in the presence of dopamine. The surface bound organic ligand controls the morphology as well as the crystallinity and the phase selection of TiO2. The surface amine groups can be tailored further with functional molecules such as dyes. As an example, this surface functionality is used for the covalent binding of a fluorescent dye,4-chloro-7- nitrobenzylurazene (NBD) to the TiO2 nanorods. The polymeric ligands have been used successfully for the in-situ and post-functionalization of TiO2 nanoparticles. Besides to chelating dopamine anchor group the multifunctional ligand system presented here incorporates a modifier molecule which allows the binding of functional molecules (here the dyes pyrene, NBD, and Texas Red) as well as additional entities which allow tailoring the solubility of inorganic nanocrystals in different solvents. A novel method for the surface functionalization of fullerene-type MoS2 nanoparticles and subsequently binding these nanoparticles onto TiO2 nanowires has been reported using polymeric ligands. The procedure involves the complexation of IF-MoS2 with a combination of Ni2+ via an umbrella-type nitrilotriacetic acid (NTA) and anchoring them to the sidewalls of TiO2 nanowires utilizing the hydroxyl groups of dopamine present in the main contents of polymeric ligand. A convenient method for the synthesis of Au/CdS nanocomposites has been presented, which were achieved through the novel method of thiol functionalization of gold colloids. The thermodynamically most stable phase of ZrO2 (cubic) has been obtained at much lower temperature (180°C). These nanoparticles are highly blue fluorescent, with a high surface area.