968 resultados para Quasilinear partial differential equations
Resumo:
Proceedings of the 10th Conference on Dynamical Systems Theory and Applications
Resumo:
A new method for the study and optimization of manu«ipulator trajectories is developed. The novel feature resides on the modeling formulation. Standard system desciptions are based on a set of differential equations which, in general, require laborious computations and may be difficult to analyze. Moreover, the derived algorithms are suited to "deterministic" tasks, such as those appearing in a repetitivework, and are not well adapted to a "random" operation that occurs in intelligent systems interacting with a non-structured and changing environment. These facts motivate the development of alternative models based on distinct concepts. The proposed embedding of statistics and Fourier trasnform gives a new perspective towards the calculation and optimization of the robot trajectories in manipulating tasks.
Resumo:
Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias cells) required to model them. Primary bipedal gaits (e.g., walk, run) are characterized by dihedral symmetry, whereas secondary bipedal gaits (e.g., gallop-walk, gallop- run) are characterized by a lower, cyclic symmetry. This fact has been used in tests of human odometry (e.g., Turvey et al. in P Roy Soc Lond B Biol 276:4309–4314, 2009, J Exp Psychol Hum Percept Perform 38:1014–1025, 2012). Results suggest that when distance is measured and reported by gaits from the same symmetry class, primary and secondary gaits are comparable. Switching symmetry classes at report compresses (primary to secondary) or inflates (secondary to primary) measured distance, with the compression and inflation equal in magnitude. The present research (a) extends these findings from overground locomotion to treadmill locomotion and (b) assesses a dynamics of sequentially coupled measure and report phases, with relative velocity as an order parameter, or equilibrium state, and difference in symmetry class as an imperfection parameter, or detuning, of those dynamics. The results suggest that the symmetries and dynamics of distance measurement by the human odometer are the same whether the odometer is in motion relative to a stationary ground or stationary relative to a moving ground.
Resumo:
There is a family of models with Physical, Human capital and R&D for which convergence properties have been discussed (Arnold, 2000a; Gómez, 2005). However, spillovers in R&D have been ignored in this context. We introduce spillovers in this model and derive its steady-state and stability properties. This new feature implies that the model is characterized by a system of four differential equations. A unique Balanced Growth Path along with a two dimensional stable manifold are obtained under simple and reasonable conditions. Transition is oscillatory toward the steady-state for plausible values of parameters.
Resumo:
The convergence features of an Endogenous Growth model with Physical capital, Human Capital and R&D have been studied. We add an erosion effect (supported by empirical evidence) to this model, and fully characterize its convergence properties. The dynamics is described by a fourth-order system of differential equations. We show that the model converges along a one-dimensional stable manifold and that its equilibrium is saddle-path stable. We also argue that one of the implications of considering this “erosion effect” is the increase in the adherence of the model to data.
Resumo:
In this work we perform a comparison of two different numerical schemes for the solution of the time-fractional diffusion equation with variable diffusion coefficient and a nonlinear source term. The two methods are the implicit numerical scheme presented in [M.L. Morgado, M. Rebelo, Numerical approximation of distributed order reaction- diffusion equations, Journal of Computational and Applied Mathematics 275 (2015) 216-227] that is adapted to our type of equation, and a colocation method where Chebyshev polynomials are used to reduce the fractional differential equation to a system of ordinary differential equations
Resumo:
Tese de Doutoramento em Ciências (área de especialização em Matemática).
Resumo:
Tese de Doutoramento em Ciências (área de especialização em Matemática).
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"
Resumo:
Elliptic differential equations, finite element method, mortar element method, streamline diffusion FEM, upwind method, numerical method, error estimate, interpolation operator, grid generation, adaptive refinement
Resumo:
This work focuses on the modeling and numerical approximations of population balance equations (PBEs) for the simulation of different phenomena occurring in process engineering. The population balance equation (PBE) is considered to be a statement of continuity. It tracks the change in particle size distribution as particles are born, die, grow or leave a given control volume. In the population balance models the one independent variable represents the time, the other(s) are property coordinate(s), e.g., the particle volume (size) in the present case. They typically describe the temporal evolution of the number density functions and have been used to model various processes such as granulation, crystallization, polymerization, emulsion and cell dynamics. The semi-discrete high resolution schemes are proposed for solving PBEs modeling one and two-dimensional batch crystallization models. The schemes are discrete in property coordinates but continuous in time. The resulting ordinary differential equations can be solved by any standard ODE solver. To improve the numerical accuracy of the schemes a moving mesh technique is introduced in both one and two-dimensional cases ...
Resumo:
We consider multidimensional backward stochastic differential equations (BSDEs). We prove the existence and uniqueness of solutions when the coefficient grow super-linearly, and moreover, can be neither locally Lipschitz in the variable y nor in the variable z. This is done with super-linear growth coefficient and a p-integrable terminal condition (p & 1). As application, we establish the existence and uniqueness of solutions to degenerate semilinear PDEs with superlinear growth generator and an Lp-terminal data, p & 1. Our result cover, for instance, the case of PDEs with logarithmic nonlinearities.
Resumo:
We give sufficient conditions for existence, uniqueness and ergodicity of invariant measures for Musiela's stochastic partial differential equation with deterministic volatility and a Hilbert space valued driving Lévy noise. Conditions for the absence of arbitrage and for the existence of mild solutions are also discussed.
Resumo:
This paper considers the lag structures of dynamic models in economics, arguing that the standard approach is too simple to capture the complexity of actual lag structures arising, for example, from production and investment decisions. It is argued that recent (1990s) developments in the the theory of functional differential equations provide a means to analyse models with generalised lag structures. The stability and asymptotic stability of two growth models with generalised lag structures are analysed. The paper concludes with some speculative discussion of time-varying parameters.