920 resultados para Processing and sinterization
Resumo:
For the treatment and monitoring of Parkinson's disease (PD) to be scientific, a key requirement is that measurement of disease stages and severity is quantitative, reliable, and repeatable. The last 50 years in PD research have been dominated by qualitative, subjective ratings obtained by human interpretation of the presentation of disease signs and symptoms at clinical visits. More recently, “wearable,” sensor-based, quantitative, objective, and easy-to-use systems for quantifying PD signs for large numbers of participants over extended durations have been developed. This technology has the potential to significantly improve both clinical diagnosis and management in PD and the conduct of clinical studies. However, the large-scale, high-dimensional character of the data captured by these wearable sensors requires sophisticated signal processing and machine-learning algorithms to transform it into scientifically and clinically meaningful information. Such algorithms that “learn” from data have shown remarkable success in making accurate predictions for complex problems in which human skill has been required to date, but they are challenging to evaluate and apply without a basic understanding of the underlying logic on which they are based. This article contains a nontechnical tutorial review of relevant machine-learning algorithms, also describing their limitations and how these can be overcome. It discusses implications of this technology and a practical road map for realizing the full potential of this technology in PD research and practice. © 2016 International Parkinson and Movement Disorder Society.
Resumo:
This study aimed to: i) determine if the attention bias towards angry faces reported in eating disorders generalises to a non-clinical sample varying in eating disorder-related symptoms; ii) examine if the bias occurs during initial orientation or later strategic processing; and iii) confirm previous findings of impaired facial emotion recognition in non-clinical disordered eating. Fifty-two females viewed a series of face-pairs (happy or angry paired with neutral) whilst their attentional deployment was continuously monitored using an eye-tracker. They subsequently identified the emotion portrayed in a separate series of faces. The highest (n=18) and lowest scorers (n=17) on the Eating Disorders Inventory (EDI) were compared on the attention and facial emotion recognition tasks. Those with relatively high scores exhibited impaired facial emotion recognition, confirming previous findings in similar non-clinical samples. They also displayed biased attention away from emotional faces during later strategic processing, which is consistent with previously observed impairments in clinical samples. These differences were related to drive-for-thinness. Although we found no evidence of a bias towards angry faces, it is plausible that the observed impairments in emotion recognition and avoidance of emotional faces could disrupt social functioning and act as a risk factor for the development of eating disorders.
Resumo:
In this paper we evaluate and compare two representativeand popular distributed processing engines for large scalebig data analytics, Spark and graph based engine GraphLab. Wedesign a benchmark suite including representative algorithmsand datasets to compare the performances of the computingengines, from performance aspects of running time, memory andCPU usage, network and I/O overhead. The benchmark suite istested on both local computer cluster and virtual machines oncloud. By varying the number of computers and memory weexamine the scalability of the computing engines with increasingcomputing resources (such as CPU and memory). We also runcross-evaluation of generic and graph based analytic algorithmsover graph processing and generic platforms to identify thepotential performance degradation if only one processing engineis available. It is observed that both computing engines showgood scalability with increase of computing resources. WhileGraphLab largely outperforms Spark for graph algorithms, ithas close running time performance as Spark for non-graphalgorithms. Additionally the running time with Spark for graphalgorithms over cloud virtual machines is observed to increaseby almost 100% compared to over local computer clusters.
Resumo:
Relevant carbon-based materials, home-made carbon-silica hybrids, commercial activated carbon, and nanostructured multi-walled carbon nanotubes (MWCNT) were tested in the oxidative dehydrogenation of ethylbenzene (EB). Special attention was given to the reaction conditions, using a relatively concentrated EB feed (10 vol.% EB), and limited excess of O2 (O 2:EB = 0.6) in order to work at full oxygen conversion and consequently avoid O2 in the downstream processing and recycle streams. The temperature was varied between 425 and 475 °C, that is about 150-200 °C lower than that of the commercial steam dehydrogenation process. The stability was evaluated from runs of 60 h time on stream. Under the applied reactions conditions, all the carbon-based materials are apparently stable in the first 15 h time on stream. The effect of the gasification/burning was significantly visible only after this period where most of them fully decomposes. The carbon of the hybrids decomposes completely rendering the silica matrix and the activated carbon bed is fully consumed. Nano structured MWCNT is the most stable; the structure resists the demanding reaction conditions showing an EB conversion of ∼30% (but deactivating) with a steady selectivity of ∼80%. The catalyst stability under the ODH reaction conditions is predicted from the combustion apparent activation energies. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
Today, databases have become an integral part of information systems. In the past two decades, we have seen different database systems being developed independently and used in different applications domains. Today's interconnected networks and advanced applications, such as data warehousing, data mining & knowledge discovery and intelligent data access to information on the Web, have created a need for integrated access to such heterogeneous, autonomous, distributed database systems. Heterogeneous/multidatabase research has focused on this issue resulting in many different approaches. However, a single, generally accepted methodology in academia or industry has not emerged providing ubiquitous intelligent data access from heterogeneous, autonomous, distributed information sources. ^ This thesis describes a heterogeneous database system being developed at High-performance Database Research Center (HPDRC). A major impediment to ubiquitous deployment of multidatabase technology is the difficulty in resolving semantic heterogeneity. That is, identifying related information sources for integration and querying purposes. Our approach considers the semantics of the meta-data constructs in resolving this issue. The major contributions of the thesis work include: (i) providing a scalable, easy-to-implement architecture for developing a heterogeneous multidatabase system, utilizing Semantic Binary Object-oriented Data Model (Sem-ODM) and Semantic SQL query language to capture the semantics of the data sources being integrated and to provide an easy-to-use query facility; (ii) a methodology for semantic heterogeneity resolution by investigating into the extents of the meta-data constructs of component schemas. This methodology is shown to be correct, complete and unambiguous; (iii) a semi-automated technique for identifying semantic relations, which is the basis of semantic knowledge for integration and querying, using shared ontologies for context-mediation; (iv) resolutions for schematic conflicts and a language for defining global views from a set of component Sem-ODM schemas; (v) design of a knowledge base for storing and manipulating meta-data and knowledge acquired during the integration process. This knowledge base acts as the interface between integration and query processing modules; (vi) techniques for Semantic SQL query processing and optimization based on semantic knowledge in a heterogeneous database environment; and (vii) a framework for intelligent computing and communication on the Internet applying the concepts of our work. ^
Resumo:
This research presents several components encompassing the scope of the objective of Data Partitioning and Replication Management in Distributed GIS Database. Modern Geographic Information Systems (GIS) databases are often large and complicated. Therefore data partitioning and replication management problems need to be addresses in development of an efficient and scalable solution. ^ Part of the research is to study the patterns of geographical raster data processing and to propose the algorithms to improve availability of such data. These algorithms and approaches are targeting granularity of geographic data objects as well as data partitioning in geographic databases to achieve high data availability and Quality of Service(QoS) considering distributed data delivery and processing. To achieve this goal a dynamic, real-time approach for mosaicking digital images of different temporal and spatial characteristics into tiles is proposed. This dynamic approach reuses digital images upon demand and generates mosaicked tiles only for the required region according to user's requirements such as resolution, temporal range, and target bands to reduce redundancy in storage and to utilize available computing and storage resources more efficiently. ^ Another part of the research pursued methods for efficient acquiring of GIS data from external heterogeneous databases and Web services as well as end-user GIS data delivery enhancements, automation and 3D virtual reality presentation. ^ There are vast numbers of computing, network, and storage resources idling or not fully utilized available on the Internet. Proposed "Crawling Distributed Operating System "(CDOS) approach employs such resources and creates benefits for the hosts that lend their CPU, network, and storage resources to be used in GIS database context. ^ The results of this dissertation demonstrate effective ways to develop a highly scalable GIS database. The approach developed in this dissertation has resulted in creation of TerraFly GIS database that is used by US government, researchers, and general public to facilitate Web access to remotely-sensed imagery and GIS vector information. ^
Resumo:
The microarray technology provides a high-throughput technique to study gene expression. Microarrays can help us diagnose different types of cancers, understand biological processes, assess host responses to drugs and pathogens, find markers for specific diseases, and much more. Microarray experiments generate large amounts of data. Thus, effective data processing and analysis are critical for making reliable inferences from the data. ^ The first part of dissertation addresses the problem of finding an optimal set of genes (biomarkers) to classify a set of samples as diseased or normal. Three statistical gene selection methods (GS, GS-NR, and GS-PCA) were developed to identify a set of genes that best differentiate between samples. A comparative study on different classification tools was performed and the best combinations of gene selection and classifiers for multi-class cancer classification were identified. For most of the benchmarking cancer data sets, the gene selection method proposed in this dissertation, GS, outperformed other gene selection methods. The classifiers based on Random Forests, neural network ensembles, and K-nearest neighbor (KNN) showed consistently god performance. A striking commonality among these classifiers is that they all use a committee-based approach, suggesting that ensemble classification methods are superior. ^ The same biological problem may be studied at different research labs and/or performed using different lab protocols or samples. In such situations, it is important to combine results from these efforts. The second part of the dissertation addresses the problem of pooling the results from different independent experiments to obtain improved results. Four statistical pooling techniques (Fisher inverse chi-square method, Logit method. Stouffer's Z transform method, and Liptak-Stouffer weighted Z-method) were investigated in this dissertation. These pooling techniques were applied to the problem of identifying cell cycle-regulated genes in two different yeast species. As a result, improved sets of cell cycle-regulated genes were identified. The last part of dissertation explores the effectiveness of wavelet data transforms for the task of clustering. Discrete wavelet transforms, with an appropriate choice of wavelet bases, were shown to be effective in producing clusters that were biologically more meaningful. ^
Resumo:
This dissertation established a software-hardware integrated design for a multisite data repository in pediatric epilepsy. A total of 16 institutions formed a consortium for this web-based application. This innovative fully operational web application allows users to upload and retrieve information through a unique human-computer graphical interface that is remotely accessible to all users of the consortium. A solution based on a Linux platform with My-SQL and Personal Home Page scripts (PHP) has been selected. Research was conducted to evaluate mechanisms to electronically transfer diverse datasets from different hospitals and collect the clinical data in concert with their related functional magnetic resonance imaging (fMRI). What was unique in the approach considered is that all pertinent clinical information about patients is synthesized with input from clinical experts into 4 different forms, which were: Clinical, fMRI scoring, Image information, and Neuropsychological data entry forms. A first contribution of this dissertation was in proposing an integrated processing platform that was site and scanner independent in order to uniformly process the varied fMRI datasets and to generate comparative brain activation patterns. The data collection from the consortium complied with the IRB requirements and provides all the safeguards for security and confidentiality requirements. An 1-MR1-based software library was used to perform data processing and statistical analysis to obtain the brain activation maps. Lateralization Index (LI) of healthy control (HC) subjects in contrast to localization-related epilepsy (LRE) subjects were evaluated. Over 110 activation maps were generated, and their respective LIs were computed yielding the following groups: (a) strong right lateralization: (HC=0%, LRE=18%), (b) right lateralization: (HC=2%, LRE=10%), (c) bilateral: (HC=20%, LRE=15%), (d) left lateralization: (HC=42%, LRE=26%), e) strong left lateralization: (HC=36%, LRE=31%). Moreover, nonlinear-multidimensional decision functions were used to seek an optimal separation between typical and atypical brain activations on the basis of the demographics as well as the extent and intensity of these brain activations. The intent was not to seek the highest output measures given the inherent overlap of the data, but rather to assess which of the many dimensions were critical in the overall assessment of typical and atypical language activations with the freedom to select any number of dimensions and impose any degree of complexity in the nonlinearity of the decision space.
Resumo:
Accurately assessing the extent of myocardial tissue injury induced by Myocardial infarction (MI) is critical to the planning and optimization of MI patient management. With this in mind, this study investigated the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to characterize a myocardial infarct at the different stages of its development. An animal study was conducted using twenty male Sprague-Dawley rats with MI. In vivo fluorescence spectra at 337 nm excitation and diffuse reflectance between 400 nm and 900 nm were measured from the heart using a portable fiber-optic spectroscopic system. Spectral acquisition was performed on (1) the normal heart region; (2) the region immediately surrounding the infarct; and (3) the infarcted region—one, two, three and four weeks into MI development. The spectral data were divided into six subgroups according to the histopathological features associated with various degrees/severities of myocardial tissue injury as well as various stages of myocardial tissue remodeling, post infarction. Various data processing and analysis techniques were employed to recognize the representative spectral features corresponding to various histopathological features associated with myocardial infarction. The identified spectral features were utilized in discriminant analysis to further evaluate their effectiveness in classifying tissue injuries induced by MI. In this study, it was observed that MI induced significant alterations (p < 0.05) in the diffuse reflectance spectra, especially between 450 nm and 600 nm, from myocardial tissue within the infarcted and surrounding regions. In addition, MI induced a significant elevation in fluorescence intensities at 400 and 460 nm from the myocardial tissue from the same regions. The extent of these spectral alterations was related to the duration of the infarction. Using the spectral features identified, an effective tissue injury classification algorithm was developed which produced a satisfactory overall classification result (87.8%). The findings of this research support the concept that optical spectroscopy represents a useful tool to non-invasively determine the in vivo pathophysiological features of a myocardial infarct and its surrounding tissue, thereby providing valuable real-time feedback to surgeons during various surgical interventions for MI.
Resumo:
A job shop with one batch processing and several discrete machines is analyzed. Given a set of jobs, their process routes, processing requirements, and size, the objective is to schedule the jobs such that the makespan is minimized. The batch processing machine can process a batch of jobs as long as the machine capacity is not violated. The batch processing time is equal to the longest processing job in the batch. The problem under study can be represented as Jm:batch:Cmax. If no batches were formed, the scheduling problem under study reduces to the classical job shop scheduling problem (i.e. Jm:: Cmax), which is known to be NP-hard. This research extends the scheduling literature by combining Jm::Cmax with batch processing. The primary contributions are the mathematical formulation, a new network representation and several solution approaches. The problem under study is observed widely in metal working and other industries, but received limited or no attention due to its complexity. A novel network representation of the problem using disjunctive and conjunctive arcs, and a mathematical formulation are proposed to minimize the makespan. Besides that, several algorithms, like batch forming heuristics, dispatching rules, Modified Shifting Bottleneck, Tabu Search (TS) and Simulated Annealing (SA), were developed and implemented. An experimental study was conducted to evaluate the proposed heuristics, and the results were compared to those from a commercial solver (i.e., CPLEX). TS and SA, with the combination of MWKR-FF as the initial solution, gave the best solutions among all the heuristics proposed. Their results were close to CPLEX; and for some larger instances, with total operations greater than 225, they were competitive in terms of solution quality and runtime. For some larger problem instances, CPLEX was unable to report a feasible solution even after running for several hours. Between SA and the experimental study indicated that SA produced a better average Cmax for all instances. The solution approaches proposed will benefit practitioners to schedule a job shop (with both discrete and batch processing machines) more efficiently. The proposed solution approaches are easier to implement and requires short run times to solve large problem instances.
Resumo:
We examined the impact of permafrost on dissolved organic matter (DOM) composition in Caribou-Poker Creeks Research Watershed (CPCRW), a watershed underlain with discontinuous permafrost, in interior Alaska. We analyzed long term data from watersheds underlain with varying degrees of permafrost, sampled springs and thermokarsts, used fluorescence spectroscopy, and measured the bioavailabity of dissolved organic carbon (DOC). Permafrost driven patterns in hydrology and vegetation influenced DOM patterns in streams, with the stream draining the high permafrost watershed having higher DOC and dissolved organic nitrogen (DON) concentrations, higher DOC:- DON and greater specific ultraviolet absorbance (SUVA) than the streams draining the low and medium permafrost watersheds. Streams, springs and thermokarsts exhibited a wide range of DOC and DON concentrations (1.5–37.5 mgC/L and 0.14–1.26 mgN/L, respectively), DOC:DON (7.1–42.8) and SUVA (1.5–4.7 L mgC-1 m-1). All sites had a high proportion of humic components, a low proportion of protein components, and a low fluorescence index value (1.3–1.4), generally consistent with terrestrially derivedDOM. Principal component analysis revealed distinct groups in our fluorescence data determined by diagenetic processing and DOM source. The proportion of bioavailable DOC ranged from 2 to 35%, with the proportion of tyrosine- and tryptophan-like fluorophores in the DOM being a major predictor of DOC loss (p\0.05, R2 = 0.99). Our results indicate that the degradation of permafrost in CPCRW will result in a decrease in DOC and DON concentrations, a decline in DOC:DON, and a reduction in SUVA, possibly accompanied by
Resumo:
Elemental and isotopic composition of leaves of the seagrassThalassia testudinum was highly variable across the 10,000 km2 and 8 years of this study. The data reported herein expand the reported range in carbon:nitrogen (C:N) and carbon:phosphorus (C:P) ratios and δ13C and δ15N values reported for this species worldwide; 13.2–38.6 for C:N and 411–2,041 for C:P. The 981 determinations in this study generated a range of −13.5‰ to −5.2‰ for δ13C and −4.3‰ to 9.4‰ for δ15N. The elemental and isotope ratios displayed marked seasonality, and the seasonal patterns could be described with a simple sine wave model. C:N, C:P, δ13C, and δ15N values all had maxima in the summer and minima in the winter. Spatial patterns in the summer maxima of these quantities suggest there are large differences in the relative availability of N and P across the study area and that there are differences in the processing and the isotopic composition of C and N. This work calls into question the interpretation of studies about nutrient cycling and food webs in estuaries based on few samples collected at one time, since we document natural variability greater than the signal often used to imply changes in the structure or function of ecosystems. The data and patterns presented in this paper make it clear that there is no threshold δ15N value for marine plants that can be used as an unambiguous indicator of human sewage pollution without a thorough understanding of local temporal and spatial variability.
Resumo:
This paper examines the history of schema theory and how culture is incorporated into schema theory. Furthermore, the author argues that cultural schema affects students’ usage of reader-based processing and text-based processing in reading.
Resumo:
This dissertation introduces the design of a multimodal, adaptive real-time assistive system as an alternate human computer interface that can be used by individuals with severe motor disabilities. The proposed design is based on the integration of a remote eye-gaze tracking system, voice recognition software, and a virtual keyboard. The methodology relies on a user profile that customizes eye gaze tracking using neural networks. The user profiling feature facilitates the notion of universal access to computing resources for a wide range of applications such as web browsing, email, word processing and editing. ^ The study is significant in terms of the integration of key algorithms to yield an adaptable and multimodal interface. The contributions of this dissertation stem from the following accomplishments: (a) establishment of the data transport mechanism between the eye-gaze system and the host computer yielding to a significantly low failure rate of 0.9%; (b) accurate translation of eye data into cursor movement through congregate steps which conclude with calibrated cursor coordinates using an improved conversion function; resulting in an average reduction of 70% of the disparity between the point of gaze and the actual position of the mouse cursor, compared with initial findings; (c) use of both a moving average and a trained neural network in order to minimize the jitter of the mouse cursor, which yield an average jittering reduction of 35%; (d) introduction of a new mathematical methodology to measure the degree of jittering of the mouse trajectory; (e) embedding an onscreen keyboard to facilitate text entry, and a graphical interface that is used to generate user profiles for system adaptability. ^ The adaptability nature of the interface is achieved through the establishment of user profiles, which may contain the jittering and voice characteristics of a particular user as well as a customized list of the most commonly used words ordered according to the user's preferences: in alphabetical or statistical order. This allows the system to successfully provide the capability of interacting with a computer. Every time any of the sub-system is retrained, the accuracy of the interface response improves even more. ^
Resumo:
Accurately assessing the extent of myocardial tissue injury induced by Myocardial infarction (MI) is critical to the planning and optimization of MI patient management. With this in mind, this study investigated the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to characterize a myocardial infarct at the different stages of its development. An animal study was conducted using twenty male Sprague-Dawley rats with MI. In vivo fluorescence spectra at 337 nm excitation and diffuse reflectance between 400 nm and 900 nm were measured from the heart using a portable fiber-optic spectroscopic system. Spectral acquisition was performed on - (1) the normal heart region; (2) the region immediately surrounding the infarct; and (3) the infarcted region - one, two, three and four weeks into MI development. The spectral data were divided into six subgroups according to the histopathological features associated with various degrees / severities of myocardial tissue injury as well as various stages of myocardial tissue remodeling, post infarction. Various data processing and analysis techniques were employed to recognize the representative spectral features corresponding to various histopathological features associated with myocardial infarction. The identified spectral features were utilized in discriminant analysis to further evaluate their effectiveness in classifying tissue injuries induced by MI. In this study, it was observed that MI induced significant alterations (p < 0.05) in the diffuse reflectance spectra, especially between 450 nm and 600 nm, from myocardial tissue within the infarcted and surrounding regions. In addition, MI induced a significant elevation in fluorescence intensities at 400 and 460 nm from the myocardial tissue from the same regions. The extent of these spectral alterations was related to the duration of the infarction. Using the spectral features identified, an effective tissue injury classification algorithm was developed which produced a satisfactory overall classification result (87.8%). The findings of this research support the concept that optical spectroscopy represents a useful tool to non-invasively determine the in vivo pathophysiological features of a myocardial infarct and its surrounding tissue, thereby providing valuable real-time feedback to surgeons during various surgical interventions for MI.