927 resultados para Polyaniline and derivatives
Benefits of Combinations of Vitamin A, C and E Derivatives in the Stability of Cosmetic Formulations
Resumo:
Chemically stable ester derivatives of vitamins A, C and E have become a focus of interest for their role in the satisfactory results in skin aging treatments. Accordingly, the aim of this study was to evaluate the physical and chemical stability of a cosmetic formulation containing 1% retinyl palmitate, ascorbyl tetraisopalmitate and tocopheryl acetate, alone or in combination. In the studies of physical stability, a Brookfield rheometer was used to determine rheological behavior of formulations containing the vitamins. Chemical stability was determined by HPLC on a Shimadzu system with UV detection. Results showed that formulations had pseudoplastic behavior and that vitamins did not alter their apparent viscosity and thixotropy. In the chemical stability studies, first-order reaction equations were used for determinations of the shelf-life of vitamins derivatives considering a remaining concentration of 85%. Combined vitamins in a single formulation had a slightly lower degradation rate as compared to different preparations containing only one of the vitamins. Considering that many cosmetic formulations contain vitamin combinations it is suggested that the present study may contribute to the development of more stable formulations containing liposoluble vitamins.
Resumo:
The present study reports the identification of two new staurosporine derivatives, 2-hydroxy-7-oxostaurosporine (1) and 3-hydroxy-7-oxostaurosporine (2), obtained from mid-polar fractions of an aqueous methanol extract of the tunicate Eudistoma vannamei, endemic to the northeast coast of Brazil. The mixture of 1 and 2 displayed IC50 values in the nM range and was up to 14 times more cytotoxic than staurosporine across a panel of tumor cell lines, as evaluated using the MTT assay.
Resumo:
Tuberculosis (TB) is a major infectious disease caused by Mycobacterium tuberculosis (Mtb). According to the World Health Organization (WHO), about 1.8 million people die from TB and 10 million new cases are recorded each year. Recently, a new series of naphthylchalcones has been identified as inhibitors of Mtb protein tyrosine phosphatases (PTPs). In this work, 100 chalcones were designed, synthesized, and investigated for their inhibitory properties against MtbPtps. Structure-activity relationships (SAR) were developed, leading to the discovery of new potent inhibitors with IC50 values in the low-micromolar range. Kinetic studies revealed competitive inhibition and high selectivity toward the Mtb enzymes. Molecular modeling investigations were carried out with the aim of revealing the most relevant structural requirements underlying the binding affinity and selectivity of this series of inhibitors as potential anti-TB drugs.
Resumo:
Phytochemical studies of Hortia brasiliana and Hortia oreadica (Rutaceae) have led to the identification of three novel dihydrocinnamic acids: 5-methoxy-2,2-dimethyl-2H-1-benzopyran-8-propanoic acid, 5,6-dimethoxy-2,2-dimethyl-2H-1-benzopyran-8-propanoic acid and erythro-2-hydroxy-4-methoxy-3-(1,2,3-trihydroxy-3-methylbutyl) benzenepropanoic acid from H. brasiliana and the second compound and six known dihydrocinnamic acids from H. oreadica. Engler included Hortia as the single Neotropical genus in the Toddalioideae subtribe Toddaliinae. However, the range of dihydrocinnamic acid derivatives found in H. brasiliana and H. oreadica show that they contain similar compounds to other species of Hortia and clearly point to their phytochemical affinities with other Rutoideae species. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A series of 3-(triazolyl)-coumarins were synthesized and tested as anti-inflammatory agents. It was possible to infer that these compounds do not alter the interaction of LPS with TLR-4 or TLR-2, as the intracellular pathways involved in the TNF-alpha secretion and COX-2 activity were not affected. Nevertheless, the compounds inhibited iNOS-derived NO production, without affecting the eNOS activity. The outcome of the docking studies showed that it pi center dot center dot center dot pi interactions with the heme group are important for the iNOS inhibition, thus making compound 3c a promising lead. Moreover, the efficacy of this compound was visualized by the reduced number of neutrophils in the LPS-inflamed subcutaneous tissue. Together, biological and docking data show that triazolyl-substituted coumarins, that can act on iNOS, are a good scaffold to be explored. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
p38 mitogen-activated protein kinase (p38 MAPK) is an important signal transducing enzyme involved in many cellular regulations, including signaling pathways, pain and inflammation. Several p38 MAPK inhibitors have been developed as drug candidates to treatment of autoimmune disorders, such as rheumatoid arthritis. In this paper we reported the docking, synthesis and pharmacological activity of novel urea-derivatives (4a-e) designed as p38 MAPK inhibitors. These derivatives presented good theoretical affinity to the target p38 MAPK, standing out compound 4e (LASSBio-998), which showed a better score value compared to the prototype GK-00687. This compound was able to reduce in vitro TNF-alpha production and was orally active in a hypernociceptive murine model sensible to p38 MAPK inhibitors. Otherwise, compound 4e presented a dose-dependent analgesic effect in a model of antigen (mBSA)-induced arthritis and anti-inflammatory profile in carrageenan induced paw edema, indicating its potential as a new antiarthritis prototype. (c) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
A new diruthenium(II,III) complex, of formula [Ru2Cl(ket)(4)], Ruket, containing the non-steroidal anti-inflammatory drug ketoprofen was synthesized and mainly characterized by electrospray ionization mass spectrometry (ESI-MS), UV-Vis-IR electronic spectroscopy and FTIR and Raman vibrational spectroscopies. The four drug-carboxylato bridging ligands stabilize a Ru-2(II,III) mixed valent core in a paddlewheel type structure as confirmed by ESI mass spectra, electronic and vibrational spectroscopies and magnetic measurements. Ruket and the analogous compounds containing ibuprofen, Ruibp, and naproxen, Runpx, were tested for the biological effects in the human colon carcinoma cells HT-29 and Caco-2 expressing high and low levels of COX-2 respectively. All compounds only weakly affected the proliferation of the colorectal cancer cells HT-29 and Caco-2, and similarly only partially inhibited the production/activity of MMP-2 and MMP-9 by HT-29 cells, suggesting that COX-2 inhibition by these drugs can only partially be involved in the pharmacological effects of these derivatives. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The photochemical cis-trans isomerization of the 4-{4-[2-(pyridin-4-yl)ethenyl]phenyl}-2,2': 6',2''-terpyridine ligand (vpytpy) was investigated by UV-vis, NMR and TWIM-MS. Ion mobility mass spectrometry was performed pursuing the quantification of the isomeric composition during photolysis, however an in-source trans-to-cis isomerization process was observed. In order to overcome this inherent phenomenon, the isomerization of the vpytpy species was suppressed by complexation, reacting with iron(II) ions, and forming the [Fe(vpytpy)(2)](2+) complex. The strategy of "freezing" the cis-trans isomerizable ligand at a given geometric conformation was effective, preventing further isomerization, thus allowing the distinction of each one of the isomers in the photolysed mixture. In addition, the experimental drift times were related to the calculated surface areas of the three possible cis-cis, cis-trans and trans-trans iron(II) complex isomers. The stabilization of the ligand in a given conformation also allows us to obtain the cis-cis and cis-trans complexes exhibiting the ligand in the metastable cis-conformation, as well as in the thermodynamically stable trans-conformation.
Resumo:
Experimental and theoretical studies on the two-photon absorption properties of two oxazole derivatives: 2,5-diphenyloxazole (PPO) and 2-(4-biphenylyI)-5-phenyl-1,3,4-oxadiazole (PBD) are presented. The two-photon absorption cross-section spectra were determined by means of the Z-scan technique, from 460 up to 650 nm, and reached peak values of 84 GM for PBD and 27 GM for PPO. Density Functional Theory and response function formalism are used to determine the molecular structures and the one- and two-photon absorption properties and to assist in the interpretation of the experimental results. The Polarizable Continuum Model in one-photon absorption calculations is used to estimate solvent effects. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The efficiency of the charge-carrier photogeneration processes in poly(2,5-bis(3',7'-dimethyl-octyloxy)-1,4-phenylene vinylene) (OC(1)OC10-PPV) has been analyzed by the spectral response of the photocurrent of devices in ITO/polymer/Al structures. The symbatic response of the photocurrent action spectra of the OC1OC10-PPV devices, obtained for light-excitation through the ITO electrode and for forward bias, has been fitted using a phenomenological model which considers that the predominant transport mechanism under external applied electric field is the drift of photogenerated charge-carriers, neglecting charge-carrier diffusion. The proposed model takes into account that charge-carrier photogeneration occurs via intermediate stages of bounded pairs (excitonic states), followed by dissociation processes. Such processes result in two different contributions to the photoconductivity: The first one, associated to direct creation of unbound polaron pairs due to intrinsic photoionization; and the second one is associated to secondary processes like extrinsic photoinjection at the metallic electrodes. The results obtained from the model have shown that the intrinsic component of the photoconductivity at higher excitation energies has a considerably higher efficiency than the extrinsic one, suggesting a dependence on the photon energy for the efficiency of the photogeneration process.
Resumo:
Background The discovery and development of anti-malarial compounds of plant origin and semisynthetic derivatives thereof, such as quinine (QN) and chloroquine (CQ), has highlighted the importance of these compounds in the treatment of malaria. Ursolic acid analogues bearing an acetyl group at C-3 have demonstrated significant anti-malarial activity. With this in mind, two new series of betulinic acid (BA) and ursolic acid (UA) derivatives with ester groups at C-3 were synthesized in an attempt to improve anti-malarial activity, reduce cytotoxicity, and search for new targets. In vitro activity against CQ-sensitive Plasmodium falciparum 3D7 and an evaluation of cytotoxicity in a mammalian cell line (HEK293T) are reported. Furthermore, two possible mechanisms of action of anti-malarial compounds have been evaluated: effects on mitochondrial membrane potential (ΔΨm) and inhibition of β-haematin formation. Results Among the 18 derivatives synthesized, those having shorter side chains were most effective against CQ-sensitive P. falciparum 3D7, and were non-cytotoxic. These derivatives were three to five times more active than BA and UA. A DiOC6(3) ΔΨm assay showed that mitochondria are not involved in their mechanism of action. Inhibition of β-haematin formation by the active derivatives was weaker than with CQ. Compounds of the BA series were generally more active against P. falciparum 3D7 than those of the UA series. Conclusions Three new anti-malarial prototypes were obtained from natural sources through an easy and relatively inexpensive synthesis. They represent an alternative for new lead compounds for anti-malarial chemotherapy.
Resumo:
The resistance to photodegradation of poly [(2-methoxy-5-n-hexyloxy)-p-phenylene vinylene] (OC1OC6-PPV) films was significantly enhanced by the use of poly(vinyl alcohol) 99% hydrolyzed as protective coating. The deposition of poly(vinyl alcohol) onto OC1OC6-PPV films did not affect the absorption and the emission spectra of the luminescent polymer. The protected film showed 5% drop on the absorbance at 500nm after 270 hours of light exposure while the unprotected film completely degraded in the same conditions. The conductivity of the protected film remained stable (around 7 × 10-10 S/m) while the value for the unprotected one dropped around two orders of magnitude after 100 hours of light exposure.
Resumo:
Estudio de la citotoxicidad de varios derivados del Betuletol y sus efectos sobre células humanas de leucemia mieloide (U937)comparando sus efectos con celulas humanas normales.
Resumo:
Homo-oligofluorenes (OFn), polyfluorenes (PF2/6) and oligofluorenes with one fluorenenone group in the center (OFnK) were synthesized. They were used as model compounds to understand of the structure-property relationships of polyfluorenes and the origin of the green emission in the photoluminescence (after photooxidation of the PFs) and the electroluminescence (EL) spectra. The electronic, electrochemical properties, thermal behavior, supramolecular self-assembly, and photophysical properties of OFn, PF2/6 and OFnK were investigated. Oligofluorenes with 2-ethylhexyl side chain (OF2-OF7) from the dimer up to the heptamer were prepared by a series of stepwise transition metal mediated Suzuki and Yamamoto coupling reactions. Polyfluorene was synthesized by Yamamoto coupling of 2,7-dibromo-9,9-bis(2-ethylhexyl)fluorene. Oligofluorenes with one fluorenone group in the center (OF3K, OF5K, OF7K) were prepared by Suzuki coupling between the monoboronic fluorenyl monomer, dimer, trimer and 2, 7-dibromofluorenone. The electrochemical and electronic properties of homo-oligofluorenes (OFn) were systematically studied by several combined techniques such as cyclic voltammetry, differential pulse voltammetry, UV-vis absorption spectroscopy, steady and time-resolved fluorescence spectroscopy. It was found that the oligofluorenes behave like classical conjugated oligomers, i.e., with the increase of the chain-length, the corresponding oxidation potential, the absorption and emission maximum, ionization potential, electron affinity, band gap and the photoluminescence lifetime displayed a very good linear relation with the reciprocal number of the fluorene units (1/n). The extrapolation of these linear relations to infinite chain length predicted the electrochemical and electronic properties of the corresponding polyfluorenes. The thermal behavior, single-crystal structure and supramolecular packing, alignment properties, and molecular dynamics of the homo-oligofluorenes (OFn) up to the polymer were studied using techniques such as TGA, DSC, WAXS, POM and DS. The OFn from tetramer to heptamer show a smectic liquid crystalline phase with clearly defined isotropization temperature. The oligomers do show a glass transition which exhibits n-1 dependence and allows extrapolation to a hypothetical glass transition of the polymer at around 64 °C. A smectic packing and helix-like conformation for the oligofluorenes from tetramer to heptamer was supported by WAXS experiments, simulation, and single-crystal structure of some oligofluorene derivatives. Oligofluorenes were aligned more easily than the corresponding polymer, and the alignability increased with the molecular length from tetramer to heptamer. The molecular dynamics in a series of oligofluorenes up to the polymer was studied using dielectric spectroscopy. The photophysical properties of OFn and PF2/6 were investigated by the steady-state spectra (UV-vis absorption and fluorescence spectra) and time-resolved fluorescence spectra both in solution and thin film. The time-resolved fluorescence spectra of the oligofluorenes were measured by streak camera and gate detection technique. The lifetime of the oligofluorenes decreased with the extension of the chain-length. No green emission was observed in CW, prompt and delayed fluorescence for oligofluorenes in m-THF and film at RT and 77K. Phosphorescence was observed for oligofluorenes in frozen dilute m-THF solution at 77K and its lifetime increased with length of oligofluorenes. A linear relation was obtained for triplet energy and singlet energy as a function of the reciprocal degree of polymerization, and the singlet-triplet energy gap (S1-T1) was found to decrease with the increase of degree of polymerization. Oligofluorenes with one fluorenone unit at the center were used as model compounds to understand the origin of the low-energy (“green”) emission band in the photoluminescence and electroluminescence spectra of polyfluorenes. Their electrochemical properties were investigated by CV, and the ionization potential (Ip) and electron affinity (Ea) were calculated from the onset of oxidation and reduction of OFnK. The photophysical properties of OFnK were studied in dilute solution and thin film by steady-state spectra and time-resolved fluorescence spectra. A strong green emission accompanied with a weak blue emission were obtained in solution and only green emission was observed on film. The strong green emission of OFnK suggested that rapid energy transfer takes place from higher energy sites (fluorene segments) to lower energy sites (fluorenone unit) prior to the radiative decay of the excited species. The fluorescence spectra of OFnK also showed solvatochromism. Monoexponential decay behaviour was observed by time-resolved fluorescence measurements. In addition, the site-selective excitation and concentration dependence of the fluorescence spectra were investigated. The ratio of green and blue emission band intensities increases with the increase of the concentration. The observed strong concentration dependence of the green emission band in solution suggests that increased interchain interactions among the fluorenone-containing oligofluorene chain enhanced the emission from the fluorenone defects at higher concentration. On the other hand, the mono-exponential decay behaviour and power dependence were not influenced significantly by the concentration. We have ruled out the possibility that the green emission band originates from aggregates or excimer formation. Energy transfer was further investigated using a model system of a polyfluorene doped by OFnK. Förster-type energy transfer took place from PF2/6 to OFnK, and the energy transfer efficiency increased with increasing of the concentration of OFnK. Efficient funneling of excitation energy from the high-energy fluorene segments to the low-energy fluorenone defects results from energy migration by hopping of excitations along a single polymer chain until they are trapped on the fluorenone defects on that chain or transferred onto neighbouring chains by Förster-type interchain energy transfer process. These results imply that the red-shifted emission in polyfluorenes can originate from (usually undesirable) keto groups at the bridging carbon atoms-especially if the samples have been subject to photo- or electro-oxidation or if fluorenone units are present due to an improper purification of the monomers prior to polymerization.
Resumo:
Wide rim tetraurea calix[4]arenes form hydrogen bonded dimeric capsules in apolar solvents in the presence of a suitable guest, which must be included in the cavity. The monomeric and dimeric form are never observed simultaneously under usual conditions. In general the combination of two different alkyl or aryl tetraurea derivatives results in the mixture of two homodimers and a heterodimer, however, only the heterodimeric species is observed in the 1:1 mixture of aryl and tosyl ureas. The (hetero)dimerization of oligourea calix[4]arenes (units) was used to construct larger structures via self-assembly of multiple calixarenes (building blocks) containing two (or more) covalently connected units. Among these self-assembled structures linear or branched polymers, cyclic oligomers and well-organized dendrimers were envisaged. The synthesis of the building blocks requires the preparation of calix[4]arene units possessing one (or more) functional group at the narrow or wide rim. Finally the oligourea units were covalently connected either directly or via suitable spacers within appropriate building blocks using amide bonds. Self-assembly properties of such building blocks were investigated.