977 resultados para Phosphate metabolism
Resumo:
Deficiency in the retinoblastoma protein (Rb) favors leanness and a healthy metabolic profile in mice largely attributed to activation of oxidative metabolism in white and brown adipose tissues. Less is known about Rb modulation of skeletal muscle metabolism. This was studied here by transiently knocking down Rb expression in differentiated C2C12 myotubes using small interfering RNAs. Compared with control cells transfected with non-targeting RNAs, myotubes silenced for Rb (by 80-90%) had increased expression of genes related to fatty acid uptake and oxidation such as Cd36 and Cpt1b (by 61% and 42%, respectively), increased Mitofusin 2 protein content (∼2.5-fold increase), increased mitochondrial to nuclear DNA ratio (by 48%), increased oxygen consumption (by 65%) and decreased intracellular lipid accumulation. Rb silenced myotubes also displayed up-regulated levels of glucose transporter type 4 expression (∼5-fold increase), increased basal glucose uptake, and enhanced insulin-induced Akt phosphorylation. Interestingly, exercise in mice led to increased Rb phosphorylation (inactivation) in skeletal muscle as evidenced by immunohistochemistry analysis. In conclusion, the silencing of Rb enhances mitochondrial oxidative metabolism and fatty acid and glucose disposal in skeletal myotubes, and changes in Rb status may contribute to muscle physiological adaptation to exercise. J. Cell. Physiol. 231: 708-718, 2016. © 2015 Wiley Periodicals, Inc.
Resumo:
Les erreurs innées du métabolisme (EIM) sont dues à des mutations de gènes codant pour des enzymes du métabolisme et sont classées selon trois grands groupes de maladies: 1) intoxications; 2) déficit énergétique et 3) déficit de synthèse ou catabolisme des maladies complexes. Le progrès thérapeutique des vingt dernières années a permis d'améliorer le pronostic des enfants atteints d'EIM. Ces enfants grandissent et doivent être pris en charge à l'adolescence et à l'âge adulte par des équipes spécialisées. Cette médecine métabolique pour adultes est une discipline relativement nouvelle avec une information limitée chez l'adulte. Les recommandations pédiatriques sont extrapolées à la prise en charge des adultes tout en intégrant les différentes étapes de vie (indépendance sociale, grossesse, vieillissement et éventuelles complications tardives). Inborn errors of metabolism (IEM) are due to mutations of genes coding for enzymes of intermediary metabolism and are classified into 3 broad categories: 1) intoxication, 2) energy defect and 3) cellular organelles synthesis or catabolism defect. Improvements of therapy over these last 20 years has improved prognosis of children with IEM. These children grow up and should have their transition to specialized adult care. Adult patients with IEM are a relatively new phenomenon with currently only limited knowledge. Extrapolated pediatric guidelines are applied to the adult population taking into account adult life stages (social independence, pregnancy, aging process and potential long-term complications).
Resumo:
BACKGROUND AND AIMS: Whether iron metabolism affects metabolic syndrome (METS) is debated. We assessed the association between several markers of iron metabolism and incidence of METS. METHODS AND RESULTS: Data from 3271 participants (1870 women, 51.3 ± 10.4 years), free of METS at baseline and followed for 5.5 years. The association of serum iron, ferritin and transferrin with incident METS was assessed separately by gender. Incidence of METS was 22.6% in men and 16.5% in women (p < 0.001). After multivariate adjustment, a positive association was found between transferrin and incident METS in men: odds ratio (OR) and 95% confidence interval for the fourth relative to the first quartile 1.55 (1.04-2.31), p for trend = 0.03, while no association was found for iron OR = 0.81 (0.53-1.24), p for trend = 0.33 and ferritin OR = 1.30 (0.88-1.92), p for trend = 0.018. In women, a negative association was found between iron and incident METS: OR for the fourth relative to the first quartile 0.51 (0.33-0.80), p for trend<0.03; the association between transferrin and incident METS was borderline significant: OR = 1.45 (0.97-2.17), p for trend = 0.07 and no association was found for ferritin: OR = 1.11 (0.76-1.63), p for trend = 0.58. CONCLUSION: Transferrin, not ferritin, is independently associated with an increased risk of incident METS; the protective effect of iron in women should be further explored.
Resumo:
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.
Resumo:
Plusieurs études populationnelles ont montré l'existence d'une association entre des taux sanguins élevés de transferrine et le syndrome métabolique (SM). Bien que cette association soit bien établie, restent encore à être décrites les associations entre le SM et les autres marqueurs sanguins du métabolisme du fer, tels que le fer, la transferrine (Tsf), la capacité totale de fixation de la transferrine (CTF) ou la saturation de la transferrine (SaTsf) sanguins. Le but de notre étude a été d'identifier les associations entre les différents marqueurs du métabolisme du fer (fer, ferritine, Tsf, CTF et SaTsf) et le SM. Les données de l'étude CoLaus, récoltées entre 2003 et 2006, ont été utilisées. Le SM était défini selon les critères du National Cholesterol Education Program Adult Panel III. L'analyse statistique a été faite en stratifiant selon le genre ainsi que le status ménopausal chez les femmes. Des 6733 participants, 1235 (18%) ont été exclus de fait d'absence de données concernant les variables qui nous intéressaient, ou chez qui nous avons soupçonné une possible hémochromatose non diagnostiquée (SaTsf> 50%). Des 5498 participants restant (âge moyen ± écart-type: 53 ± 11 ans), 2596 étaient des hommes, 1285 des femmes pré- et 1617 des femmes postménopausées. La prévalence du SM était de 29,4% chez les hommes, 8,3% et 25,5% chez les femmes pré- et postménopausées, respectivement. Dans les trois groupes, la prévalence du SM était la plus haute dans les quartiles les plus élevés de ferritine, Tsf et CTF, ainsi que dans le quartile le plus bas de SaTsf. Après ajustement sur l'âge, l'indice de masse corporelle, la protéine C réactive, la consommation de tabac et/ou d'alcool, la prise de suppléments en fer et les marqueurs hépatiques, l'appartenance au quartile le plus élevé de ferritine, Tsf ou CTF était associée à un risque plus important de SM chez les hommes et les femmes postménopausées : Odds ratio (OR) et [intervalle de confiance à 95%] pour la ferritine 1.44 [1.07-1.94] et 1.47 [0.99-2.17]; pour la Tsf et la CTF, OR=1.43 [1.06-1.91] et 2.13 [1.44-3.15] pour les hommes et les femmes postménopausées, respectivement. Au contraire, l'appartenance au quartile le plus élevé de la SaTsf était associé à un risque moins important de SM: OR=0.77 [0.57-1.05] et 0.59 [0.39-0.90] pour les hommes et les femmes postménopausées, respectivement. Il n'y avait aucune association entre les marqueurs sanguins du métabolisme du fer et le SM chez les femmes préménopausées, ni entre le fer sanguin et le SM chez les trois groupes. En conclusion, la majorité des marqueurs sanguins du métabolisme du fer, mais pas le fer lui-même, sont associés de manière indépendante au SM chez les hommes et les femmes postménopausées. -- Context: Excessive iron storage has been associated with metabolic syndrome (MS). Objective: To assess the association between markers of iron metabolism and MS in a healthy population. Design: Cross-sectional study conducted between 2003 and 2006. Setting: Population-based study in Lausanne, Switzerland. Patients: 5,498 participants aged 35-75 years, stratified by sex and menopausal status. Participants with transferrin saturation (TSAT) >50% were excluded. Intervention: None. Main Outcome Measures: serum iron, ferritin, transferrin, total iron binding capacity (TIBC) and TSAT. MS was defined according to ATP-III criteria. Results: Prevalence of MS was 29.4% in men, 8.3% in premenopausal and 25.5% in postmenopausal women. On bivariate analysis, the highest prevalence of MS occurred in the highest quartiles of serum ferritin, transferrin and TIBC, and in the lowest quartile of TSAT. After multivariate adjustment for age, body mass index, C-reactive protein, smoking, alcohol, liver markers and iron supplementation, men and postmenopausal women in the highest quartile of serum ferritin, transferrin and TIBC had a higher risk of presenting with MS: for ferritin, Odds ratio and [95% CI]=1.44 [1.07-1.94] for men and 1.47 [0.99-2.17] for postmenopausal women; for transferrin and TIBC, OR=1.43 [1.06-1.91] and 2.13 [1.44-3.15], Participants in the highest quartile of TSAT had a lower risk of MS: OR=0.77 [0.57-1.05] for men and 0.59 [0.39-0.90] for postmenopausal women. No association was found between iron and MS and between markers of iron metabolism and MS in premenopausal women. Conclusion: Ferritin, transferrin, TIBC are positively and TSAT is negatively associated with MS in men and postmenopausal women.
Resumo:
All plants are typically confronted to simultaneous biotic and abiotic stress throughout their life cycle. Low inorganic phosphate (Pi) is the most common nutrient deficiency limiting plant growth in natural and agricultural ecosystems while insect herbivory accounts for major losses in plant productivity and impacts on ecological and evolutionary changes in plant populations. Here we report that plants experiencing Pi deficiency induce the jasmonic acid (JA) pathway and enhance their defence against insect herbivory. The phol mutant is impaired in the translocation of Pi from roots to shoots and shows the typical symptoms associated with Pi deficiency, including high anthocyanin and poor shoot growth. These phol shoot phenotypes were significantly attenuated by blocking the JA biosynthesis or signalling pathways. Wounded phol leaves hyper-accumulated JA in comparison to wild type, leading to increased resistance against the generalist herbivore Spodoptera littoralis. Pi deficiency also triggered enhanced resistance to herbivory in wild-type Arabidopsis as well as tomato and tobacco, revealing that the link between Pi deficiency and JA-mediated herbivory resistance is conserved in a diversity of plants, including crops. We performed a phol suppressor screen to identify new components involved in the adaptation of plants to Pi deficiency. We report that the THO RNA TRANSCRIPTION AND EXPORT (THO/TREX) complex is a crucial component involved in modulating the Pi- deficiency response. Knockout mutants of at least three members of the THO/TREX complex, including TEX1, HPR1, and TH06, can suppress the phol shoot phenotype. Grafting experiments showed that loss of function of TEX1 only in the root was sufficient to suppress the reduced shoot growth phenotype of phol while maintaining low Pi contents. This indicates that TEX1 is involved in a long distance root-to-shoot signalling component of the Pi-deficiency response. We identified a small MYB-like transcription factor, RAD LIKE 3 (RL3), as a potential downstream target of the THO/TREX complex. RL3 expression is induced in phol mutants but attenuated in phol-7 texl-4 double mutants. Identical to knockout mutants of the THO/TREX complex, rl3 mutants can suppress the phol shoot phenotypes. Interestingly, RL3 is induced during Pi deficiency and is described in the literature as likely being mobile. It is therefore a promising new candidate involved in the root-to-shoot Pi-deficiency signalling response. Finally, we report that PHOl and its homologue PH01:H3 are involved in the co-regulation of Pi and zinc (Zn) homeostasis. PH01;H3 is up-regulated in response to Zn deficiency and, like PHOl, is expressed in the root vascular cylinder and localizes to the Golgi when expressed transiently in tobacco cells. The phol;h3 mutant accumulates more Pi as compared to wild-type when grown in Zn-deficient medium, but this increase is abolished in the phol phol;h3 double mutant. These results suggest that PH01;H3 restricts the PHOl-mediated root-to-shoot Pi transfer in responsé to Zn deficiency. Résumé Au cours de leur cycle de vie, toutes les plantes sont généralement confrontées à divers stress biotiques et abiotiques. La carence nutritionnelle la plus fréquente, limitant la croissance des plantes dans les écosystèmes naturels et agricoles, est la faible teneur en phosphate inorganique (Pi). Au niveau des stress biotiques, les insectes herbivores sont responsables de pertes majeures de rendement et ont un impact considérable sur les changements écologiques et évolutifs dans les populations des plantes. Au cours de ce travail, nous avons mis en évidence que les plantes en situation de carence en Pi induisent la voie de l'acide jasmonique (JA) et augmentent leur défense contre les insectes herbivores. Le mutant phol est déficient dans le transport du phosphate des racines aux feuilles et démontre les symptômes typiques associés à la carence, tels que la forte concentration en anthocyane et une faible croissance foliaire. Ces phénotypes du mutant phol sont significativement atténués lors d'un blocage de la voie de la biosynthèse ou des voies de signalisation du JA. La blessure des feuilles induit une hyper-accumulation de JA chez phol, résultant en une augmentation de la résistance contre l'herbivore généraliste Spodoptera littoralis. Outre Arabidopsis, la carence en Pi induit une résistance accrue aux insectes herbivores aussi chez la tomate et le tabac. Cette découverte révèle que le lien entre la carence en Pi et la résistance aux insectes herbivores via le JA est conservé dans différentes espèces végétales, y compris les plantes de grandes cultures. Nous avons effectué un crible du suppresseur de phol afin d'identifier de nouveaux acteurs impliqués dans l'adaptation de la plante à la carence en Pi. Nous rapportons que le complexe nommé THO RNA TRANSCRIPTION AND EXPORT (THO/TREX) est un élément crucial participant à la réponse des feuilles à la carence en Pi. Les mutations d'au moins trois des membres que composent le complexe THO/TREX, incluant TEX1, HPR1 et 77/06, peuvent supprimer le phénotype de phol. Des expériences de greffes ont montré que la perte de fonction de TEX1, seulement dans la racine, est suffisante pour supprimer le phénotype de la croissance réduite des parties aériennes observé chez le mutant phol, tout en maintenant de faibles teneurs en Pi foliaire. Ceci indique que TEX1 est impliqué dans la signalisation longue distance entre les racines et les parties aériennes. Nous avons identifié un petit facteur de transcription proche de la famille des MYB, RAD LIKE 3 (RL3), comme une cible potentielle en aval du complexe THO / TREX. L'expression du gène RL3 est induite dans le mutant phol mais atténuée dans le double mutant phol-7 texl-4. Exactement comme les plantes mutées d'un des membres du complexe THO/TREX, le mutant rl3 peut supprimer le phénotype foliaire de phol. RL3 est induit au cours d'une carence en Pi et est décrit dans la littérature comme étant potentiellement mobile. Par conséquent, il serait un nouveau candidat potentiellement impliqué dans la réponse longue distance entre les racines et les parties aériennes lors d'un déficit en Pi. Enfin, nous reportons que PHOl et son homologue PHOl: H3 sont impliqués dans la co- régulation de l'homéostasie du Pi et du zinc (Zn). PHOl; H3 est sur-exprimé en réponse au déficit en Zn et, comme PHOl, est exprimé dans les tissus vasculaires des racines et se localise dans l'appareil de Golgi lorsqu'il est exprimé de manière transitoire dans des cellules de tabac. Le mutant phol; h3 accumule plus de Pi par rapport aux plantes sauvages lorsqu'il est cultivé sur un milieu déficient en Zn, mais cette augmentation en Pi est abolie dans le double mutant phol phol; h3. Ces résultats suggèrent qu'en réponse à une carence en Zn, PHOl; H3 limite l'action de PHOl et diminue le transfert du Pi des racines aux parties aériennes.
Resumo:
Osteoclasts are multinucleated bone degrading cells. Phosphate is an important constituent of mineralized bone and released in significant quantities during bone resorption. Molecular contributors to phosphate transport during the resorptive activity of osteoclasts have been controversially discussed. This study aimed at deciphering the role of sodium-dependent phosphate transporters during osteoclast differentiation and bone resorption. Our studies reveal RANKL-induced differential expression of sodium-dependent phosphate transport protein IIa (NaPi-IIa) transcript and protein during osteoclast development, but no expression of the closely related NaPi-IIb and NaPi-IIc SLC34 family isoforms. In vitro studies employing NaPi-IIa-deficient osteoclast precursors and mature osteoclasts reveal that NaPi-IIa is dispensable for bone resorption and osteoclast differentiation. These results are supported by the analysis of structural bone parameters by high-resolution microcomputed tomography that yielded no differences between adult NaPi-IIa WT and KO mice. By contrast, both type III sodium-dependent phosphate transporters Pit-1 and Pit-2 were abundantly expressed throughout osteoclast differentiation, indicating that they are the relevant sodium-dependent phosphate transporters in osteoclasts and osteoclast precursors. We conclude that phosphate transporters of the SLC34 family have no role in osteoclast differentiation and function and propose that Pit-dependent phosphate transport could be pivotal for bone resorption and should be addressed in further studies.
Resumo:
The response of shoots to phosphate (Pi) deficiency implicates long-distance communication between roots and shoots, but the participating components are poorly understood. We have studied the topology of the Arabidopsis (Arabidopsis thaliana) PHOSPHATE1 (PHO1) Pi exporter and defined the functions of its different domains in Pi homeostasis and signaling. The results indicate that the amino and carboxyl termini of PHO1 are both oriented toward the cytosol and that the protein spans the membrane twice in the EXS domain, resulting in a total of six transmembrane α-helices. Using transient expression in Nicotiana benthamiana leaf, we demonstrated that the EXS domain of PHO1 is essential for Pi export activity and proper localization to the Golgi and trans-Golgi network, although the EXS domain by itself cannot mediate Pi export. In contrast, removal of the amino-terminal hydrophilic SPX domain does not affect the Pi export capacity of the truncated PHO1 in N. benthamiana. While the Arabidopsis pho1 mutant has low shoot Pi and shows all the hallmarks associated with Pi deficiency, including poor shoot growth and overexpression of numerous Pi deficiency-responsive genes, expression of only the EXS domain of PHO1 in the roots of the pho1 mutant results in a remarkable improvement of shoot growth despite low shoot Pi. Transcriptomic analysis of pho1 expressing the EXS domain indicates an attenuation of the Pi signaling cascade and the up-regulation of genes involved in cell wall synthesis and the synthesis or response to several phytohormones in leaves as well as an altered expression of genes responsive to abscisic acid in roots.
Resumo:
The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.
Resumo:
Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a "cerebral glucose-sparing effect," and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome.
Concerted changes in N and C primary metabolism in alfalfa (Medicago sativa) under water restriction
Resumo:
Although the mechanisms of nodule N2 fixation in legumes are now well documented, some uncertainty remains on the metabolic consequences of water deficit. In most cases, little consideration is given to other organs and, therefore, the coordinated changes in metabolism in leaves, roots, and nodules are not well known. Here, the effect of water restriction on exclusively N2-fixing alfalfa (Medicago sativa L.) plants was investigated, and proteomic, metabolomic, and physiological analyses were carried out. It is shown that the inhibition of nitrogenase activity caused by water restriction was accompanied by concerted alterations in metabolic pathways in nodules, leaves, and roots. The data suggest that nodule metabolism and metabolic exchange between plant organs nearly reached homeostasis in asparagine synthesis and partitioning, as well as the N demand from leaves. Typically, there was (i) a stimulation of the anaplerotic pathway to sustain the provision of C skeletons for amino acid (e.g. glutamate and proline) synthesis; (ii) re-allocation of glycolytic products to alanine and serine/glycine; and (iii) subtle changes in redox metabolites suggesting the implication of a slight oxidative stress. Furthermore, water restriction caused little change in both photosynthetic efficiency and respiratory cost of N2 fixation by nodules. In other words, the results suggest that under water stress, nodule metabolism follows a compromise between physiological imperatives (N demand, oxidative stress) and the lower input to sustain catabolism.
Resumo:
CONTEXT: Compensatory increases in FGF23 with increasing phosphate intake may adversely impact health. However, population and clinical studies examining the link between phosphate intake and FGF23 levels have focused mainly on populations living in highly industrialized societies in which phosphate exposure may be homogenous. OBJECTIVE: Contrast dietary phosphate intake, urinary measures of phosphate excretion and FGF23 levels across populations that differ by level of industrialization. DESIGN: Cross-sectional analysis of three populations Setting: Maywood, IL, U.S., Mah|fe Island, Seychelles, and Kumasi, Ghana Participants: Adults with African ancestry aged 25-45 years Main Outcome: Fibroblast growth factor 23 (FGF23) levels Results: The mean age was 35.1 (6.3) years and 47.9% were male. Mean phosphate intake and fractional excretion of phosphate were significantly higher in the U.S. vs. Ghana while no significant difference in phosphate intake or fractional excretion of phosphate was noted between U.S. and Seychelles for men or women. Overall, median FGF23 values were 57.41 RU/ml (IQR 43.42, 75.09) in U.S., 42.49 RU/ml (IQR 33.06, 55.39) in Seychelles and 33.32 RU/ml (IQR 24.83, 47.36) in Ghana. In the pooled sample, FGF23 levels were significantly and positively correlated with dietary phosphate intake (r=0.11; P < 0.001), and the fractional excretion of phosphate (r=0.13; P < 0.001) but not with plasma phosphate levels (-0.001; P = 0.8). Dietary phosphate intake was significantly and positively associated with the fractional excretion of phosphate (r=0.23; P < 0.001). CONCLUSION: The distribution of FGF23 levels in a given population may be influenced by the level of industrialization, likely due to differences in access to foods preserved with phosphate additives.
Resumo:
Inorganic polyphosphate (polyP) is found in all living organisms. The known polyP functions in eukaryotes range from osmoregulation and virulence in parasitic protozoa to modulating blood coagulation, inflammation, bone mineralization and cellular signalling in mammals. However mechanisms of regulation and even the identity of involved proteins in many cases remain obscure. Most of the insights obtained so far stem from studies in the yeast Saccharomyces cerevisiae. Here, we provide a short overview of the properties and functions of known yeast polyP metabolism enzymes and discuss future directions for polyP research.
Resumo:
Members of the bacterial genus Streptomyces are well known for their ability to produce an exceptionally wide selection of diverse secondary metabolites. These include natural bioactive chemical compounds which have potential applications in medicine, agriculture and other fields of commerce. The outstanding biosynthetic capacity derives from the characteristic genetic flexibility of Streptomyces secondary metabolism pathways: i) Clustering of the biosynthetic genes in chromosome regions redundant for vital primary functions, and ii) the presence of numerous genetic elements within these regions which facilitate DNA rearrangement and transfer between non-progeny species. Decades of intensive genetic research on the organization and function of the biosynthetic routes has led to a variety of molecular biology applications, which can be used to expand the diversity of compounds synthesized. These include techniques which, for example, allow modification and artificial construction of novel pathways, and enable gene-level detection of silent secondary metabolite clusters. Over the years the research has expanded to cover molecular-level analysis of the enzymes responsible for the individual catalytic reactions. In vitro studies of the enzymes provide a detailed insight into their catalytic functions, mechanisms, substrate specificities, interactions and stereochemical determinants. These are factors that are essential for the thorough understanding and rational design of novel biosynthetic routes. The current study is a part of a more extensive research project (Antibiotic Biosynthetic Enzymes; www.sci.utu.fi/projects/biokemia/abe), which focuses on the post-PKS tailoring enzymes involved in various type II aromatic polyketide biosynthetic pathways in Streptomyces bacteria. The initiative here was to investigate specific catalytic steps in anthracycline and angucycline biosynthesis through in vitro biochemical enzyme characterization and structural enzymology. The objectives were to elucidate detailed mechanisms and enzyme-level interactions which cannot be resolved by in vivo genetic studies alone. The first part of the experimental work concerns the homologous polyketide cyclases SnoaL and AknH. These catalyze the closure of the last carbon ring of the tetracyclic carbon frame common to all anthracycline-type compounds. The second part of the study primarily deals with tailoring enzymes PgaE (and its homolog CabE) and PgaM, which are responsible for a cascade of sequential modification reactions in angucycline biosynthesis. The results complemented earlier in vivo findings and confirmed the enzyme functions in vitro. Importantly, we were able to identify the amino acid -level determinants that influence AknH and SnoaL stereoselectivity and to determine the complex biosynthetic steps of the angucycline oxygenation cascade of PgaE and PgaM. In addition, the findings revealed interesting cases of enzyme-level adaptation, as some of the catalytic mechanisms did not coincide with those described for characterised homologs or enzymes of known function. Specifically, SnoaL and AknH were shown to employ a novel acid-base mechanism for aldol condenzation, whereas the hydroxylation reaction catalysed by PgaM involved unexpected oxygen chemistry. Owing to a gene-level fusion of two ancestral reading frames, PgaM was also shown to adopt an unusual quaternary sturucture, a non-covalent fusion complex of two alternative forms of the protein. Furthermore, the work highlighted some common themes encountered in polyketide biosynthetic pathways such as enzyme substrate specificity and intermediate reactivity. These are discussed in the final chapters of the work.
Resumo:
Calcium phosphate compounds such as Hydroxyapatite (HAp) were prepared by hydrothermal synthesis with phycogenic CaCO3 as starting material. Material obtained was characterised by usual methods (XRD, FTIR, TG, N2-adsorption, SEM and EDX) in order to study its physical-chemical characteristics. The prepared HAp showed that it may be suitable for use as a biomaterial.