999 resultados para Mound size
Resumo:
This study includes determination and discussion of the texture and heavy mineral compositions of some modem Nile Delta coastal sands (river, coastal dune, beach-face, and nearshore marine) in order to delineate the process and factors that regulate the size distribution of heavy mineral grains comprising these coastal sands. Textural analysis of unseparated bulk samples indicate that the examined four types of sands differ in their mean grain sizes and degree of sorting. However, analysis of size distribution curves of 10 heavy mineral species or group of species in the four environments having the same general shape and nearly similar in that general order of arrangement. However, these curves vary both in median sizes and sorting. The size distribution of a heavy mineral in the Nile Delta coastal sands appear to depend on: (1) range of grain size fractions in each sample, (2) relative availability of heavy mineral in each size grade of the sample, (3) specific gravity of minerals comprising these sands, and (4) some other unknown factor or factors. Results of size measurement of heavy minerals indicated that increasing specific gravity is accompanied by increasing fineness of the heavy minerals. This study may be useful in search for marine placers and understanding the processes of grain-sorting on the sea beaches.
Resumo:
Silicon nanoparticles between 2.5 nm and 30 nm in diameter were functionalized by means of photoassisted hydrosilylation reactions in the aerosol phase with terminal alkenes of varying chain length. Using infrared spectroscopy and nuclear magnetic resonance, the chemical composition of the alkyl layer was determined for each combination of particle size and alkyl chain length. The spectroscopic techniques were used to determine that smaller particles functionalized with short chains in the aerosol phase tend to attach to the interior (β) alkenyl carbon atom, whereas particles >10 nm in diameter exhibit attachment primarily with the exterior (α) alkenyl carbon atom, regardless of chain length. © 2011 American Chemical Society.
Resumo:
Codends of four different mesh size" were compared during exploratory bottom trawling on Lake Victoria. Small mesh sizes (19 and 38 mm) generally caught greater quantities of fish than large mesh sizes (64 and 76 mm) with haplochromis species responsible for the difference. The differences in catch rates were most pronounced where dense concentration of small haplochromis were found. This was generally in shallow water since the average size of haplochromis tends to increase with depth. Catch rates for species other than haplochromis were fairly similar for the codends tested, although there were indications of lower catches in small mesh coderlds fished through dense haplochromis concentrations. For haplochromis fished with 64 and 38 mm eodends, the estimated 50% retention lengths were 13.6 and 8.0 cm, respectively. The predicted value for the 19 mm codend was 4.5 cm.
Resumo:
This paper is an outline of methods practically useful for the evaluation of ichthyomass, fish abundance, available production and yield in lakes and rivers. Terms and concepts are reviewed, and difficulties stemming from the use of "predetermined" mathematical models are discussed. Sampling with toxicants in blocked-off areas was found to be the most practical method and is described in detail. For the total estimation of ichthyomass the spatial ranges of fish distribution must be determined; the results of echo-sounding surveys for horizontal, vertical, topographical, seasonal and diel fish distribution are given. Some of the most important methods for computing available production are listed and applied to Lake Kariba as an example. In particular, a method based on the balance between the main predator and prey species is reviewed. The ecological production survey concept is finally stressed as applied to multispecies fish stocks.
Resumo:
BACKGROUND: When fresh morselized graft is compacted, as in impaction bone-grafting for revision hip surgery, fat and marrow fluid is either exuded or trapped in the voids between particles. We hypothesized that the presence of incompressible fluid damps and resists compressive forces during impaction and prevents the graft particles from moving into a closer formation, thus reducing the graft strength. In addition, viscous fluid such as fat may act as an interparticle lubricant, thus reducing the interlocking of the particles. METHODS: We performed mechanical shear testing in the laboratory with use of fresh-frozen human femoral-head allografts that had been passed through different orthopaedic bone mills to produce graft of differing particle-size distributions (grading). RESULTS: After compaction of fresh graft, fat and marrow fluid continued to escape on application of normal loads. Washed graft, however, had little lubricating fluid and better contact between the particles, increasing the shear resistance. On mechanical testing, washed graft was significantly (p < 0.001) more resistant to shearing forces than fresh graft was. This feature was consistent for different bone mills that produced graft of different particle-size distributions and shear strengths. CONCLUSIONS: Removal of fat and marrow fluid from milled human allograft by washing the graft allows the production of stronger compacted graft that is more resistant to shear, which is the usual mode of failure. Further research into the optimum grading of particle sizes from bone mills is required.
Resumo:
Background: When fresh morselized graft is compacted, as in impaction bone-grafting for revision hip surgery, fat and marrow fluid is either exuded or trapped in the voids between particles. We hypothesized that the presence of incompressible fluid damps and resists compressive forces during impaction and prevents the graft particles from moving into a closer formation, thus reducing the graft strength. In addition, viscous fluid such as fat may act as an interparticle lubricant, thus reducing the interlocking of the particles. Methods: We performed mechanical shear testing in the laboratory with use of fresh-frozen human femoral-head allografts that had been passed through different orthopaedic bone mills to produce graft of differing particle-size distributions (grading). Results: After compaction of fresh graft, fat and marrow fluid continued to escape on application of normal loads. Washed graft, however, had little lubricating fluid and better contact between the particles, increasing the shear resistance. On mechanical testing, washed graft was significantly (p < 0.001) more resistant to shearing forces than fresh graft was. This feature was consistent for different bone mills that produced graft of different particle-size distributions and shear strengths. Conclusions: Removal of fat and marrow fluid from milled human allograft by washing the graft allows the production of stronger compacted graft that is more resistant to shear, which is the usual mode of failure. Further research into the optimum grading of particle sizes from bone mills is required. Clinical Relevance: Understanding the mechanical properties of milled human allograft is important when impaction grafting is used for mechanical support. A simple means of improving the mechanical strength of graft produced by currently available bone mills, including an intraoperative washing technique, is described.
Resumo:
The fishery of Lake Wamala has declined since the lake was stocked in 1956 and opened to fishing during the 1960s. Surveys were conducted on the lake during 1975/78 and 1988/92 to investigate the causes of declining fish catches. The lake produced an average of 4000 - 6000 tonnes of fish annually from 1960s through 1970s. Total fish catches decreased from a maximum of 7100 tonnes in 1967 to less than 500 tonnes by 1990s. Catch rates decreased from about 8 kg in the 1960s to less than 1 kg per net per night by 1975. During the 1970s the catch was dominated by Oreochromis niloticus (67%) followed by Clarias gariepinus (17%), and Protopterus aethiopicus (15.1 %). By 1990s the proportion of O. niloticus had decreased to 45.1% while that of P. aethiopicus had increased to 37.6%. These changes seem to have been caused by overfishing resulting from increased fishing effort from the recommended 250 to about 1000 boats and the additional increase in effort through driving fish into the nets by beating water. The maximum size of O. niloticus in the fishery decreased from 32 cm total length in 1975/78 to 22 cm in 1988/92 while the size at first maturity decreased from about 21 cm to 14 cm during the period. This has been concurrent with a shift in the mesh size of gillnet used from 127 mm (5") in 1960s to 64 mm by 1990s. Environmental changes, especially in lake level in 1980, may also have affected the fishery.
Resumo:
介绍了应用过夜地粪便来估计白马雪山黑白仰鼻猴群大小和组成的一种方法。该物种以单雄多雌单 元和全雄组的形式在树上过夜。粪粒根据其大小可分为3种类型:成年雄性的(最大)、成年雌性的(中等大小)和 未成年个体的(最小)。2000一2001年,搜集了滇西北白马雪山国家级自然保护区北部南任村(99。04 7E,28。34 7N) 附近黑白仰鼻猴群每个季节2个过夜地的粪粒。根据2001年11月猴群通过开阔地的数据来确定猴群组成。每个 季节,由于单雄多雌单元的成年个体数与其粪粒数正相关,所以二者回归直线的斜率可以看作是每个个体每晚 的平均排便量。由于该物种的栖息地主要为高山峡谷,而且能见度较低,因此,利用过夜地粪便比以前通过猴群 活动痕迹来估计猴群大小和组成相对准确、可靠。从估计成年雌性个体数的角度看,利用粪粒来估计种群大约有 9.4%的偏差。导致偏差的可能原因有杂草和灌丛对粪粒准确计数的影响、个体排粪率的差异以及成年雄性最小 粪粒与成年雌性最大粪粒的混淆等。该方法适应于栖息地和主要食物与本文研究种群相似的其他种群。
Resumo:
为了研究猕猴属的颅骨差异性, 从而探 讨种间在形态、功能和系统分化方面的相互联系, 测定了11 个猕猴种类的77 个颅骨变量, 用于主成 分分析和判别分析。应用巢式分析方法, 分析过程 包括3 个步骤。所有变量根据功能和部位的不同首 先分为7 个单位: 下颌、下颌齿、上颌齿、上面 颅、下面颅、面颅后部和颅腔。第2 步根据它们所 揭示的相似性(具有相同的种间及种内差异性类 型) 合并为3 个解剖区域: 咀嚼器官(下颌、下颌 齿、上颌齿) , 面颅(上面颅和下面颅) 和整个面 颅后(面颅后和颅腔) 。第3 步从3 个解剖区域筛 选出27 个变量代表整个颅骨的形态结构。除了寻 找不同的功能单位, 解剖区域及总的颅骨具有不同 的种间和种内差异类型外, 此过程对筛出研究意义 不大的变量起很重要的作用。上述分析过程分别用 于对雌、雄性和两性的研究。所研究的11 个猕猴 种类间形成了3 聚类。第1 类包括食蟹猴(Macaca f ascicularis) 、戴帽猴( M1 sinica) 和头巾猴( M1 radiata) ; 第2 类包括猕猴( M1 mulatta ) 、熊猴 (M1 assensis ) 、平顶猴( M1 nemestrina ) 和黑猿 (M1 nigra) ; 第3 类包括蛮猴( M1 sylvanus ) 、日 本猴( M1 f uscata) 、短尾猴( M1 arctoides ) 和藏 酋猴(M1 thibetana) 。分别从两性差异、食物、生态、分类和系统分化方面进行了差异性讨论, 结果 认为猕猴种间颅骨的差异性主要是由于系统分化不 同而引起个体差异所致, 即种间和种内存在的个体 差异。在主成分分析中, 这些差异在不同的区域表 现在不同的成分上。在咀嚼器官上种间的差异在第 1 主成分上, 种内的差异则在第2 主成分上。面颅 的情况则刚好相反。这两种差异在面颅后及颅腔上 则被第1 和第2 主成分所平分。这样, 种间的差异 在咀嚼器官上大于种内的差异。种内的差异在面颅 上则大于种间的差异。这两种差异在面颅后和颅腔 上则几乎大小相等。这一研究结果表明, 与传统的 概念不同, 第2 主成分不仅仅表现形态、形状的差 异, 而如同第1 主成分一样, 也表现形态的大小成 分。此研究所揭示的猕猴种间关系部分与Foden (1976 , 1980) 和Delson (1980) 相同。如平顶猴 与黑猿、短尾猴、藏酋猴和熊猴的关系。食蟹猴、 头巾猴和戴帽猴的关系则不同, 并已得到有关分子 生物学的支持, 此3 种可能来自同一祖先并经历相 同的扩散过程。此研究所设计的巢式分析过程提供 了一种很好的差异性研究手段。最终结果暗示在形 态学研究中仅仅考虑某一区域的形态结构是很不够 的, 因为不同的部分具有不同的种间及种内差异类 型。这在化石研究中尤其要注意。
Resumo:
Fluid flow in biological tissues is important in both mechanical and biological contexts. Given the hierarchical nature of tissues, there are varying length scales at which time-dependent mechanical behavior due to fluid flow may be exhibited. Here, spherical nanoindentation and microindentation testings are used for the characterization of length scale effects in the mechanical response of hydrated tissues. Although elastic properties were consistent across length scales, there was a substantial difference between the time-dependent mechanical responses for large and small contact radii in the same tissue specimens. This difference was far more obvious when poroelastic analysis was used instead of viscoelastic analysis. Overall, indentation testing is a fast and robust technique for characterizing the hierarchical structure of biological materials from nanometer to micrometer length scales and is capable of making quantitative material property measurements to do with fluid flow. © 2011 Materials Research Society.
Resumo:
The compressive behaviour of finite unidirectional composites with a region of misaligned reinforcement is investigated via finite element analyses. Models with and without fibre bending stiffness are compared, confirming that compressive strength is accurately predicted without modelling fibre bending stiffness for real composite components which typically have waviness defects of several millimetres wavelength. Various defect parameters are investigated. Results confirm the well-known sensitivity of compressive strength to misalignment angle, and also show that compressive strength falls rapidly with the proportion of laminate width covered by the wavy region. A simple empirical equation is proposed to model the effect of a single patch of waviness in finite specimens. Other parameters such as length and position of the wavy region are found to have a smaller effect on compressive strength. The modelling approach is finally adapted to model distributed waviness and thus determine the compressive strength of composites with realistic waviness defects. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The effect of size and slip system configuration on the tensile stress-strain response of micron-sized planar crystals as obtained from discrete dislocation plasticity simulations is presented. The crystals are oriented for either single or symmetric double slip. With the rotation of the tensile axis unconstrained, there is a strong size dependence, with the flow strength increasing with decreasing specimen size. Below a certain specimen size, the flow strength of the crystals is set by the nucleation strength of the initially present Frank-Read sources. The main features of the size dependence are the same for both the single and symmetric double slip configurations.