967 resultados para Molecular orbital Methods
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A hemoglobina fetal - Hb F, formada por duas cadeias gama e duas cadeias alfa, é característica do período fetal do desenvolvimento, tendo sua síntese diminuída no período pós-natal. em algumas alterações hereditárias, a Hb F permanece aumentada, como nas delta-beta talassemia, beta talassemia e persistência hereditária de Hb F (PHHF). A síntese da globina gama também pode ser estimulada por fatores externos como leucemias, transplantes de medula óssea, induções químicas, dentre outros. Através da observação de Hb F aumentada em doadores de sangue por procedimentos eletroforéticos objetivou-se avaliar a quantidade de Hb F em amostras de sangue de candidatos à doação, visando estabelecer seus limites de normalidade na população de São José do Rio Preto e região, por meio de desnaturação alcalina e cromatografia líquida de alta pressão (HPLC), comparar as metodologias aplicadas e, nos indivíduos com Hb F aumentada, realizar estudos moleculares para identificar as mutações que alteram a expressão dos genes gama. Foram analisadas 208 amostras de sangue, sendo 119 de candidatos à doação e 89 de indivíduos sem sintomas de anemia ou achados hematológicos e com Hb F aumentada como grupo comparativo. Das 119 amostras de candidatos à doação, 110 foram utilizadas para traçar o perfil de normalidade de Hb F, comparando-se as metodologias de desnaturação alcalina e HPLC, onde se obteve a média de 1,48% e de 0,6%, respectivamente. A análise estatística por regressão linear mostrou diferença significativa na comparação entre as duas metodologias aplicadas, sendo a HPLC mais precisa para a quantificação de Hb F. Foram observados nos testes de rastreamento de hemoglobinas anormais nestas 110 amostras de sangue: 16,4% de alfa talassemia, 0,9% com Hb F aumentada, 0,9% com beta talassemia e 0,9% com hemoglobina variante de cadeia delta. Os outros nove doadores de sangue apresentaram Hb F acima de 10% em eletroforese e observou-se média de 32,28% para desnaturação alcalina e de 26,4% para HPLC. As análises moleculares por PCR-ASO foram realizadas na tentativa de se identificar um defeito genético que pudesse explicar o aumento de Hb F, pelo rastreamento de 16 mutações que originam talassemias do tipo beta. Encontraram-se 5,3% de heterozigotos para mutação CD6-A e 1,75% para as mutações CD 39, IVS1:6, -87 e IVS2:654, todas em heterozigose. Os resultados encontrados neste estudo evidenciam a necessidade de melhor caracterização dos perfis de hemoglobina obtidos pelos métodos clássicos e a importância de sua caracterização molecular.
Resumo:
Aims. We study trajectories of planetesimals whose orbits decay due to gas drag in a primordial solar nebula and are perturbed by the gravity of the secondary body on an eccentric orbit whose mass ratio takes values from mu(2) = 10(-7) to mu(2) = 10(-3) increasing ten times at each step. Each planetesimal ultimately suffers one of the three possible fates: (1) trapping in a mean motion resonance with the secondary body; (2) collision with the secondary body and consequent increase of its mass; or (3) diffusion after crossing the orbit of the secondary body.Methods. We take the Burlirsh-Stoer numerical algorithm in order to integrate the Newtonian equations of the planar, elliptical restricted three-body problem with the secondary body and the planetesimal orbiting the primary. It is assumed that there is no interaction among planetesimals, and also that the gas does not affect the orbit of the secondary body.Results. The results show that the optimal value of the gas drag constant k for the 1: 1 resonance is between 0.9 and 1.25, representing a meter size planetesimal for each AU of orbital radius. In this study, the conditions of the gas drag are such that in theory, L4 no longer exists in the circular case for a critical value of k that defines a limit size of the planetesimal, but for a secondary body with an eccentricity larger than 0.05 when mu(2) = 10(-6), it reappears. The decrease of the cutoff collision radius increase the difusions but does not affect the distribution of trapping. The contribution to the mass accretion of the secondary body is over 40% with a collision radius 0.05R(Hill) and less than 15% with 0.005R(Hill) for mu(2) = 10(-7). The trappings no longer occur when the drag constant k reachs 30. That means that the size limit of planetesimal trapping is 0.2 m per AU of orbital radius. In most cases, this accretion occurs for a weak gas drag and small secondary eccentricity. The diffusions represent most of the simulations showing that gas drag is an efficient process in scattering planetesimals and that the trapping of planetesimals in the 1: 1 resonance is a less probable fate. These results depend on the specific drag force chosen.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We suggest a pseudospectral method for solving the three-dimensional time-dependent Gross-Pitaevskii (GP) equation, and use it to study the resonance dynamics of a trapped Bose-Einstein condensate induced by a periodic variation in the atomic scattering length. When the frequency of oscillation of the scattering length is an even multiple of one of the trapping frequencies along the x, y or z direction, the corresponding size of the condensate executes resonant oscillation. Using the concept of the differentiation matrix, the partial-differential GP equation is reduced to a set of coupled ordinary differential equations, which is solved by a fourth-order adaptive step-size control Runge-Kutta method. The pseudospectral method is contrasted with the finite-difference method for the same problem, where the time evolution is performed by the Crank-Nicholson algorithm. The latter method is illustrated to be more suitable for a three-dimensional standing-wave optical-lattice trapping potential.
Resumo:
We performed computer simulations of interstellar cloud-cloud collisions using the three-dimensional smoothed particle magnetohydrodynamics method. In order to study the role of the magnetic field on the process of collision-triggered fragmentation, we focused our attention on head-on supersonic collisions between two identical spherical molecular-clouds. Two extreme configurations of the magnetic field were adopted: parallel and perpendicular to the initial clouds motion. The initial magnetic field strength was approximately 12.0 muG. In the parallel case, much more of the collision debris were retained in the shocking region than in the non-magnetic case where gas escaped freely throughout the symmetry plane. Differently from the non-magnetic case, eddy-like vortices were formed. The regions of highest vorticity and the the regions of highest density are offset. We found clumps formation only in the parallel case, however, they were larger, hotter and less dense than in the analogous non-magnetic case. In the perpendicular case, the compressed field works as a magnetic wall, preventing a stronger compression of the colliding clouds. This last effect inhibits direct contact of the two clouds. In both cases, we found that the field lines show a chaotic aspect in large scales. Also, the field magnitude is considerably amplified in the shock layer. However, the field distribution is almost coherent in the higher density regions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The IR-spectrum of the isonicotinamide molecule (C(2)H(2)NC(3)H(2)CONH(2)) is studied by means of theoretical and experimental methods. For an appropriate representation of the molecular environment, Gaussian basis sets to the atoms of these molecule are built and then contracted (5s and 6s5p). For evaluation of the quality of contracted basis sets in molecular calculations, we have accomplished calculations of the total and the orbital (HOMO and HOMO-1) energies in the HF-Roothaan method for the molecule studied. The results obtained with the contracted basis sets [5s/6s5p] are compared to values obtained with our (21s/22s14p) basis sets and with those obtained with the D95, 6-31G, and 6-311G basis sets from literature. It was added one d polarization function in the [6s5p] contracted basis set for C ((3)P) atom, which was used in combination with the basis sets for H ((2)S), N ((4)S). and O((3)P) atoms to calculate the infrared spectrum of isonicotinamide. The calculations were performed at B3LYP level and were compared to corresponding experimental values also obtained in our laboratory. The theoretical results in comparison with the corresponding experimental values indicate a very good interpretation of the IR-spectrum and that the strategy of an appropriate representation of the molecular environment through the basis sets is an effective alternative to investigate vibrational theoretical properties of the nicotinamide molecule. (c) 2006 Published by Elsevier B.V.
Resumo:
A study using two classification methods (SDA and SIMCA) was carried out in this work with the aim of investigating the relationship between the structure of flavonoid compounds and their free-radical-scavenging ability. In this work, we report the use of chemometric methods (SDA and SIMCA) able to select the most relevant variables (steric, electronic, and topological) responsible for this ability. The results obtained with the SDA and SIMCA methods agree perfectly with our previous model, in which we used other chemometric methods (PCA, HCA and KNN) and are also corroborated with experimental results from the literature. This is a strong indication of how reliable the selection of variables is.
Resumo:
Objective. Meningeal melanocytoma generally occurs in the posterior fossa. Orbital manifestation is rarely encountered.Methods. A thirty-five year-old man presented with progressive proptosis of his right eye. Computed tomography (CT) and Magnetic Resonance Imaging (MRI) of the brain showed an expansive intraconal mass lesion occupying the superior orbital compartment, the entire orbital apex, and the optic foramen. Histological analysis and Immunohistochical staining for S-100 and HMB-45 monoclonal antibodies confirmed melanocytoma.Findings. Microsurgical removal was accomplished through a fronto-orbital craniotomy. Chemotherapy and irradiation followed the initial intervention. The patient returned for follow up two years after surgery, complaining of headache and right visual loss. A subfrontal tumor with massive edema was found on follow up CT scan.Interpretation. Meningeal melanocytomas are rare benign pigmented tumors of the central nervous system. They are predominant in the posterior fossa and spinal cord and frequently mistaken for melanomas, especially on frozen sections. Orbital presentation is rare. The natural history is poorly defined.
Resumo:
Several methods have been proposed for calculations of the eccentricity function for a high value of the eccentricity, however they cannot be used when the high degree and order coefficients of gravity fields are taken into account. The method proposed by Wnuk(1) is numerically stable in this case, but when is used. a large number of terms occurs in formulas for geopotential perturbations. In this paper we propose an application of expansions of some functions of the eccentric anomaly E as well as Hansen coefficients in power series of (e - e*), where e* is a fixed value of the eccentricity derived by da Silva Fernandes(2,3,4). These series are convergent for all e < 1.