990 resultados para Mixed oxides
Resumo:
Documentos de Trabajo
Resumo:
In this paper, we present some coincidence point theorems in the setting of quasi-metric spaces that can be applied to operators which not necessarily have the mixed monotone property. As a consequence, we particularize our results to the field of metric spaces, partially ordered metric spaces and G-metric spaces, obtaining some very recent results. Finally, we show how to use our main theorems to obtain coupled, tripled, quadrupled and multidimensional coincidence point results.
Resumo:
Power Point presentado en The Energy and Materials Research Conference - EMR2015 celebrado en Madrid (España) entre el 25-27 de febrero de 2015
Resumo:
251 p.
Resumo:
Er3+-doped lithium-potassium mixed alkali aluminophosphate glasses belonging to the oxide system xK(2)O-(15x)Li2O-4B(2)O(3)-11Al(2)O(3)-5BaO-65P(2)O(5) are obtained in a semi-continuous melting quenching process. Spectroscopic properties of Er3+-doped glass matrix have been analysed by fitting the experimental data with the standard Judd-Ofelt theory. It is observed that Judd-Ofelt intensity parameters-Omega(t)(t=2, 4 and 6) of Er3+ change when the second alkali is introduced into glass matrix. The variation of line strength S-ed[I-4(13/2),I-4(15/2)] follows the same trend as that of the Omega(6) parameter. The effect of mixed alkali on the spectroscopic properties of the aluminophosphate glasses, such as absorption cross-section, stimulated emission cross-section, spontaneous emission probability, branching ratio and the radiative lifetime, has also been investigated in this paper.
Resumo:
Lithium sodium mixed alkali aluminophosphate glasses of the composition xNa(2)O-(15-x)Li2O-4B(2)O(3)-11Al(2)O(3)-5BaO-65P(2)O(5) (where x=0, 3.75, 7.5, 11.25 and 15 mol%) containing 0.5 mol% Er2O3 were prepared by melt quenching. The absorption spectra of Er3+ were studied from the experimental oscillator strengths and the Judd-Ofelt intensity parameters were obtained. The variations of Judd-Ofelt intensity parameters (Omega(2), Omega(4) and Omega(6)), experimental oscillator strengths of certain excited states of Er3+ and hypersensitive band positions with different mixed alkali content have been discussed in detail. It was found that there were similar effects of mixed alkali on both Judd-Ofelt intensity parameter 02 and the experimental oscillator strength of the hypersensitive transition, I-4(15/2) -> H-2(11/2). No shifts in the peak wavelength of the studied transitions were found in different glasses. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
FSodium phosphate tellurite glasses in the system (NaPO3)(x)(TeO2)(1-x) were prepared and structurally characterized by thermal analysis, vibrational spectroscopy, X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses, the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units, and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismotic units. The combined interpretation of the O 1s XPS data and the P-31 solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather the formation of homootomic P-O-P and Te-O-Te linkages is favored over mixed P-O-Te connectivities. As a consequence of this chemical segregation effect, the spatial sodium distribution is not random, as also indicated by a detailed analysis of P-31/No-23 rotational echo double-resonance (REDOR) experiments. ACHTUNGTRENUNG(TeO2)1 x were prepared and structurally characterized by thermal analysis,vibrat ional spectroscopy,X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses,the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units,and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismatic units. The combined interpretation of the O 1s XPS data and the 31P solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather,the formation of homoatomic P O P and Te O Te linkages is favored over mixed P O Te connectivities. As a consequence of this chemical segregation effect,the spatial sodium distribution is not random,as also indicated by a detailed analysis of 31P/23Na rotational echo double-resonance (REDOR) experiments.
Resumo:
Er3+ doped aluminophosphate glasses with various Na2O/Li2O ratios were prepared at 1250 degrees C using a silica crucible to study mixed alkali effect (MAE). The effect of relative alkali content on glass transition temperature, crystallization temperature and thermal stability were investigated using differential scanning calorimetry (DSC). In addition, apparent activation energies for crystallization, E, were determined employing the Kissinger equation. The effect of Al2O3 content on the magnitude of MAE was also discussed. No mixed-alkali effect is observed on crystallization temperature. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We report on the effect of various alkaline-earth metal oxides on the broadband infrared luminescence covering 1000-1600 nm wavelength region from bismuth-doped silicate glasses. The full width at half maximum (FWHM) of the infrared luminescence and the fluorescent lifetime is more than 200 nm and 400 mu s, respectively. The fluorescent intensity decreases with increasing basicity of host glasses. Besides the broadband infrared luminescence, luminescence centered at 640 nm was also observed, which should be ascribed to Bi2+ rather than to the familiar Bi3+. We suggest that the infrared luminescence should be assigned to the X-2 (2)Pi (3/2) -> X-1 (2)Pi(1/2) transition of BiO molecules dispersed in the host glasses. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Tin oxide doped beta-Ga2O3 single crystals are recognized as transparent conductive oxides (TCOs) materials. They have a larger band gap (4.8 eV) than any other TCOs, thus can be transparent in UV region. This property shows that they have the potential to make the optoelectronic device used in even shorter wavelength than usual TCOs. beta-Ga2O3 single crystals doped with different Sn4+ concentrations were grown by the floating zone technique. Their optical properties and electrical conductivities were systematically studied. It has been found that their conductivities and optical properties were influenced by the Sn4+ concentrations and annealing. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
ZnO crystals with dimensions of 30 x 38 x 8 turn 3 have been grown by the hydrothermal method using a mixed solution of KOH, LiOH and H2O2. The growing rates for +c(0001) and -c(000 (1) over bar) were 0.17 and 0.09 mm/day, respectively. The crystal color was very light green for +c sector and dark brown for -c sector. For the +c sector, the resistivity at room temperature was 80 0 cm, the carrier concentration was about 10(4)/cm(3), and the mobility was about 100 cm(2)/Vs. The full-width at half-maximum (FWHM) of double axis X-ray rocking curve for the polished Zn face cut from +c sector was 45 arcsec. The photoluminescence (PL) spectrum and the absorption spectrum of +c part of the crystals at room temperature were also reported and discussed in this paper. (c) 2008 Elsevier B.V. All rights reserved.