908 resultados para Micro-éveils


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procedure has been developed to grow ZSM-5 crystals in situ on a molybdenum (Mo) support. The high heat conductivity (138 W/mK) and high mechanical stability at elevated temperatures of the Mo support allow the application of ZSM-5 coatings in micro reactors for high temperature processes involving large heat effects. The effect of the synthesis mixture composition on ZSM-5 coverage and on the uniformity of the ZSNI-5 coatings was investigated on plates of 10 X 10 mm(2). Ratios of H2O/Si = 50, SUAI = 25, and TPA/Al = 2.0 were found to be optimal for the formation of uniform coatings of 6 g/m(2) at a temperature of 150 degrees C and a synthesis time of 48 h. Scaling up of the synthesis procedure on 72 Mo plates of 40 x 9.8 x 0.1 mm 3 resulted in a uniform coverage of 14.8 +/- 0.4 g/m(2). The low deviation per individual plate (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macroporosity(>100µm) in bone void fillers is a known prerequisite for tissue regeneration, but recent literature has highlighted the added benefit of microporosity(0.5 - 10µm). The aim of this study was to compare the in vitro performances of a novel interconnective microporous hydroxyapatite (HA) derived from red algae to four clinically available macroporous calcium phosphate (CaP) bone void fillers. The use of algae as a starting material for this novel void filler overcomes the issue of sustainability, which overshadows continued use of scleractinian coral in the production of some commercially available materials, namely Pro-OsteonTM and Bio-Coral®. This study investigated the physicochemical properties of each bone voidfiller material using x-ray diffraction, fourier transform infrared spectroscopy, inductive coupled plasma, and nitrogen gas absorption and mercury porosimetry. Biochemical analysis, XTT, picogreen and alkaline phosphatase assays were used to evaluate the biological performances of the five materials. Results showed that algal HA is non-toxic to human foetal osteoblast (hFOB) cells and supports cell proliferation and differentiation. The preliminary in vitro testing of microporous algal-HA suggests that it is comparable to the four clinically approved macroporous bone void fillers tested. The results demonstrate that microporous algal HA has good potential for use in vivo and in new tissue engineered strategies for hard tissue repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of a charged-particle microbeam provides a unique opportunity to control precisely, the number of particles traversing individual cells and the localization of dose within the cell. The accuracy of 'aiming' and of delivering a precise number of particles crucially depends on the design and implementation of the collimation and detection system. This report describes the methods available for collimating and detecting energetic particles in the context of a radiobiological microbeam. The arrangement developed at the Gray Laboratory uses either a 'V'-groove or a thick-walled glass capillary to achieve 2-5 mu m spatial resolution. The particle detection system uses an 18 mu m thick transmission scintillator and photomultiplier tube to detect particles with >99% efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal fatigue analysis based on 2D finite difference and 3D finite element methods is carried out to study the performance of solar panel structure during micro-satellite life time. Solar panel primary structure consists of honeycomb structure and composite laminates. The 2D finite difference (I-DEAS) model yields predictions of the temperature profile during one orbit. Then, 3D finite element analysis (ANSYS) is applied to predict thermal fatigue damage of solar panel structure. Meshing the whole structure with 2D multi-layer shell elements with sandwich option is not efficient, as it misses thermal response of the honeycomb structure. So we applied a mixed approach between 3D solid and 2D shell elements to model the solar panel structure without the sandwich option.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mounting accuracy of satellite payload and
ADCS (attitude determination and control subsystem) seats
is one of the requirements to achieve the satellite mission
with satisfactory performance. Deviation of the position of
the mounting seat for Multi-Band-Earth-Imager (MBEI) is
caused by cracks in the plate of the basis unit and bracket
for attachment of MBEI. These cracks were detected during
inspection of the satellite strength mock-up after vibration
testing for air transportation phase. Most probable reason of
the cracking is fatigue damage as strength mock-up
structure was subjected to prolonged vibration loading
during various loading cases. Total vibration duration
during testing is about 56 hours. In order to study the
cracking reasons, finite element modeling of the structural
parts of the basis unit including MBEI bracket and
instrument MBEI is subjected to harmonic response to
simulate vibration loading for the case of air transportation.
Numerical results are compared with the experimental ones,
and mechanical design of the basis-plate unit is modified

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new model for fatigue damage evolution of polymer matrix composites (PMC) is presented. The model is based on a combination of an orthotropic damage model and an isotropic fatigue evolution model. The orthotropic damage model is used to predict the orthotropic damage evolution within a single cycle. The isotropic fatigue model is used to predict the magnitude of fatigue damage accumulated as a function of the number of cycles. This approach facilitates the determination of model parameters since the orthotropic damage model parameters can be determined from available data from quasi-static-loading tests. Then, limited amount of fatigue data is needed to adjust the fatigue evolution model. The combination of these two models provides a compromise between efficiency and accuracy. Decomposition of the state variables down to the constituent scale is accomplished by micro-mechanics. Phenomenological damage evolution models are then postulated for each constituent and for the micro-structural interaction among them. Model parameters are determined from available experimental data. Comparison between model predictions and additional experimental data is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mounting accuracy of satellite payload and ADCS (attitude determination and control subsystem) seats is one of the requirements to achieve the satellite mission with acceptable performance. Components of mounting inaccuracy are technological inaccuracies, residual plastic deformations after loading (during transportation and orbital insertion), elastic deformations, and thermal deformations during orbital operation. This paper focuses on estimation of thermal deformations of satellite structure. Thermal analysis is executed by applying finite-difference method (IDEAS) and temperature profile for satellite components case is evaluated. Then, Perform thermal finite-element analysis applying the finite-difference model results as boundary conditions; and calculate the resultant thermal strain. Next, applying the resultant thermal strain, perform finite-element structure analysis to evaluate structure deformations at the payload and ADCS equipments seats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of millimetre wave and terahertz systems to penetrate clothing is well known. The fact that the transmission of clothing and the reflectivity of the body vary as a function of frequency is less so. Several instruments have now been developed to exploit this capability. The choice of operating frequency, however, has often been associated with the maturity and the cost of the enabling technology rather than a sound systems engineering approach. Top level user and systems requirements have been derived to inform the development of design concepts. Emerging micro and nano technology concepts have been reviewed and we have demonstrated how these can be evaluated against these requirements by simulation using OpenFx. Openfx is an open source suite of 3D tools for modeling, animation and visualization which has been modified for use at millimeter waves. © 2012 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater drawn from fluvioglacial sand and gravel aquifers form the principal source of drinking water in many part of central Western Europe. High population densities and widespread organic agriculture in these same areas constitute hazards that may impact the microbiological quality of many potable supplies. Tracer testing comparing two similarly sized bacteria (E.coli and P. putida) and the smaller bacteriophage (H40/1) with the response of non-reactive solute tracer (uranine) at the decametre scale revealed that all tracers broke through up to 100 times more quickly than anticipated using conventional rules of thumb. All microbiological tracer responses were less disperse than the solute, although bacterial peak relative concentrations consistently exceeded those of the solute tracer at one sampling location reflecting exclusion processes influencing micro biological tracer migration. Relative recoveries of H40/1 and E.coli proved consistent at both monitoring wells, while responses of H40/1 and P.putida differed. Examination of exposures of the upper reaches of the aquifer in nearby sand and gravel quarries revealed the aquifer to consist of laterally extensive layers of open framework (OW) gravel enveloped in finer grained gravelly sand. Granulometric analysis of these deposits suggested that the OW gravel was up to two orders of magnitude more permeable than the surrounding deposits giving rise to the preferential flow paths. By contrast fine grained lenses of silty sand within the OW gravels are suspected to play an important role in the exclusion processes that permit solutes to access them but exclude larger micro organisms.