1000 resultados para Michigan Tech Lode
Resumo:
Finnish immigrants are often seen as labor activists, even “radicals,” and key players in the “left-right” political divide, thus indicating a real presence on the “other” side of the economy. How did successive historians build these now-standard views? This paper takes a sweeping tour of writing on Finnish Canadian workers, tracing the evolution of these assessments. Archives and histories provided basic notions of “the” Finnish Canadian and were key sources as professional scholars – many Finns themselves – began their work. In Canada, new academics – Varpu Lindstrom most prominently – wrote about women, arts and culture, intellectual activity, and the impact of Finns as “exceptional” historical actors in socioeconomic terms. But, have historians of Finnish Canadian workers built a convincing case? Examination of Finnish Canadian “economic” historiography offers insights into the Finnish Canadian “story,” and the nature of generalization in immigrant and ethnic history.
Resumo:
In the Iron Range Strike of 1916, working-class wives picketed alongside their husbands in a conflict-ridden and dangerous setting. Mine deputies abused immigrant women on the picket lines and in their homes, with several disquieting reports receiving statewide attention in Minnesota. Many middle-class reformers in the Twin Cities grew sympathetic to the plight of northern mining families and became controversially involved the labor struggle. Some middleclass women worked alongside working-class wives and radical organizers from the Industrial Workers of the World (IWW). At the center of this gendered analysis is the cross-class cooperation between an upper-middle class woman, Lenora Austin Hamlin, a radical reformer, Elizabeth Gurley Flynn, and the story of a working-class housewife, Mikla Masonovich. This study will ask how authentic, prevalent, and unproblematic their stories of cross-class cohesive action actually were. In answering this, it will address and identify those factors that impeded women’s potential for unity. “Flash in the Pan” argues that as a result of both real and perceived differences, these networks of women remained isolated, inhibiting each from gaining sufficient power to work cohesively, and marginalizing their influence. Drawing upon a variety of sources, including media representations in newspapers, and archives of social, labor and women’s organizations, this regional study lends state-level insight into the larger gender-labor historiography.
Resumo:
While the 1913-1914 copper country miners’ strike undoubtedly plays an important role in the identity of the Keweenaw Peninsula, it is worth noting that the model of mining corporations employing large numbers of laborers was not a foregone conclusion in the history of American mining. Between 1807 and 1847, public mineral lands in Missouri, in the Upper Mississippi Valley, and along the southern shore of Lake Superior were reserved from sale and subject to administration by the nation’s executive branch. By decree of the federal government, miners in these regions were lessees, not landowners. Yet, in the Wisconsin lead region especially, federal authorities reserved for independent “diggers” the right to prospect virtually unencumbered. In doing so, they preserved a comparatively egalitarian system in which the ability to operate was determined as much by luck as by financial resources. A series of revolts against federal authority in the early nineteenth century gradually encouraged officers in Washington to build a system in the copper country in which only wealthy investors could marshal the resources to both obtain permits and actually commence mining operations. This paper will therefore explore the role of the federal government in establishing a leasing system for public mineral lands in the years previous to the California Gold Rush, highlighting the development of corporate mining which ultimately set a stage for the wave of miners’ strikes in the late nineteenth and early twentieth centuries.
Resumo:
During the second half of the nineteenth century fraternal and benevolent associations of numerous descriptions grew and prospered in mining communities everywhere. They played an important, but neglected role, in assisting transatlantic migration and movement between mining districts as well as building social capital within emerging mining communities. They helped to build bridges between different ethnic communities, provided conduits between labour and management, and networked miners into the non-mining community. Their influence spread beyond the adult males that made up most of their membership to their wives and families and provided levels of social and economic support otherwise unobtainable at that time. Of course, the influence of these organisations could also be divisive where certain groups or religions were excluded and they may have worked to exacerbate, as much as ameliorate, the problems of community development. This paper will examine some of these issues by looking particularly at the role of Freemasonry and Oddfellowry in Cornwall, Calumet, and Nevada City between 1860 and 1900. Work on fraternity in the Keweenaw was undertaken in Houghton some years ago with a grant from the Copper Country Archive and has since been continued by privately funded research in California and other Western mining states. Some British aspects of this research can be found in my article on mining industrial relations in Labour History Review April 2006
Resumo:
Michigan copper mining companies owned and rented more than 3,000 houses along the Keweenaw Peninsula at the time of the 1913-14 copper strike. The provision of company-constructed housing in mining districts has drawn a wide range of inquiry. Mining historians, community planners, architectural historians, and academics interested in the immigrant experience have identified miners' housing as intriguing examples of corporate paternalism, social planning, vernacular adaptation and ethnic segregation. Michigan's Copper Country retains many examples of such housing and recent research has shown that the Michigan copper mining companies championed the use of housing as a non-wage employment benefit. This paper will investigate the increasingly important role of occupancy and control of company housing during the strike. Illustrated with images collected during the strike by the fledgling U.S. Department of Labor, the presentation explores the history of company housing in the Copper Country, its part in a larger system of corporate welfare, and how the threat of evictions may have turned the tide of strike.
Resumo:
Job seekers in resource-based economic settings like the Keweenaw Peninsula in Upper Michigan and the Nickel Basin surrounding Sudbury, Ontario faced many challenges, from the dangers of the job to corporate domination to the “boom and bust” nature of inevitably limited supplies of even “endless” natural riches. Adding to these many challenges in both settings was the employer view that you were best suited to certain tasks. This paper examines these expectations from “both” ends – how and why did employers see matters this way, and what did the “recipients” make of being cast in certain roles ? Did the newcomers also expect to earn their keep from a limited range of options ? While the last word on this issue awaits a much larger study, even a glance can inform both the scholar of resource settings and the ethnic historian about an important element of resource-based economies. This paper, then, examines the links between stereotype, preference, and necessity – to what extent did local populations fight, appreciate or succumb to expectation when “making a living.” As the title suggests, Finns get significant attention, as befits both settings under study. However, the paper looks to similar trends amongst a broad demographic swathe in each setting. Was “who” you were the crucial element in finding sustenance ? “Ethnic”, Aboriginal, or “established settler society” – what factors shaped economic expectations, choices and roles?
Resumo:
Direct imaging of extra-solar planets in the visible and infrared region has generated great interest among scientists and the general public as well. However, this is a challenging problem. Diffculties of detecting a planet (faint source) are caused, mostly, by two factors: sidelobes caused by starlight diffraction from the edge of the pupil and the randomly scattered starlight caused by the phase errors from the imperfections in the optical system. While the latter diffculty can be corrected by high density active deformable mirrors with advanced phase sensing and control technology, the optimized strategy for suppressing the diffraction sidelobes is still an open question. In this thesis, I present a new approach to the sidelobe reduction problem: pupil phase apodization. It is based on a discovery that an anti-symmetric spatial phase modulation pattern imposed over a pupil or a relay plane causes diffracted starlight suppression sufficient for imaging of extra-solar planets. Numerical simulations with specific square pupil (side D) phase functions, such as ... demonstrate annulling in at least one quadrant of the diffraction plane to the contrast level of better than 10^12 with an inner working angle down to 3.5L/D (with a = 3 and e = 10^3). Furthermore, our computer experiments show that phase apodization remains effective throughout a broad spectrum (60% of the central wavelength) covering the entire visible light range. In addition to the specific phase functions that can yield deep sidelobe reduction on one quadrant, we also found that a modified Gerchberg-Saxton algorithm can help to find small sized (101 x 101 element) discrete phase functions if regional sidelobe reduction is desired. Our simulation shows that a 101x101 segmented but gapless active mirror can also generate a dark region with Inner Working Distance about 2.8L/D in one quadrant. Phase-only modulation has the additional appeal of potential implementation via active segmented or deformable mirrors, thereby combining compensation of random phase aberrations and diffraction halo removal in a single optical element.
Resumo:
Power transformers are key components of the power grid and are also one of the most subjected to a variety of power system transients. The failure of a large transformer can cause severe monetary losses to a utility, thus adequate protection schemes are of great importance to avoid transformer damage and maximize the continuity of service. Computer modeling can be used as an efficient tool to improve the reliability of a transformer protective relay application. Unfortunately, transformer models presently available in commercial software lack completeness in the representation of several aspects such as internal winding faults, which is a common cause of transformer failure. It is also important to adequately represent the transformer at frequencies higher than the power frequency for a more accurate simulation of switching transients since these are a well known cause for the unwanted tripping of protective relays. This work develops new capabilities for the Hybrid Transformer Model (XFMR) implemented in ATPDraw to allow the representation of internal winding faults and slow-front transients up to 10 kHz. The new model can be developed using any of two sources of information: 1) test report data and 2) design data. When only test-report data is available, a higher-order leakage inductance matrix is created from standard measurements. If design information is available, a Finite Element Model is created to calculate the leakage parameters for the higher-order model. An analytical model is also implemented as an alternative to FEM modeling. Measurements on 15-kVA 240?/208Y V and 500-kVA 11430Y/235Y V distribution transformers were performed to validate the model. A transformer model that is valid for simulations for frequencies above the power frequency was developed after continuing the division of windings into multiple sections and including a higher-order capacitance matrix. Frequency-scan laboratory measurements were used to benchmark the simulations. Finally, a stability analysis of the higher-order model was made by analyzing the trapezoidal rule for numerical integration as used in ATP. Numerical damping was also added to suppress oscillations locally when discontinuities occurred in the solution. A maximum error magnitude of 7.84% was encountered in the simulated currents for different turn-to-ground and turn-to-turn faults. The FEM approach provided the most accurate means to determine the leakage parameters for the ATP model. The higher-order model was found to reproduce the short-circuit impedance acceptably up to about 10 kHz and the behavior at the first anti-resonant frequency was better matched with the measurements.
Resumo:
The problem of optimal design of a multi-gravity-assist space trajectories, with free number of deep space maneuvers (MGADSM) poses multi-modal cost functions. In the general form of the problem, the number of design variables is solution dependent. To handle global optimization problems where the number of design variables varies from one solution to another, two novel genetic-based techniques are introduced: hidden genes genetic algorithm (HGGA) and dynamic-size multiple population genetic algorithm (DSMPGA). In HGGA, a fixed length for the design variables is assigned for all solutions. Independent variables of each solution are divided into effective and ineffective (hidden) genes. Hidden genes are excluded in cost function evaluations. Full-length solutions undergo standard genetic operations. In DSMPGA, sub-populations of fixed size design spaces are randomly initialized. Standard genetic operations are carried out for a stage of generations. A new population is then created by reproduction from all members based on their relative fitness. The resulting sub-populations have different sizes from their initial sizes. The process repeats, leading to increasing the size of sub-populations of more fit solutions. Both techniques are applied to several MGADSM problems. They have the capability to determine the number of swing-bys, the planets to swing by, launch and arrival dates, and the number of deep space maneuvers as well as their locations, magnitudes, and directions in an optimal sense. The results show that solutions obtained using the developed tools match known solutions for complex case studies. The HGGA is also used to obtain the asteroids sequence and the mission structure in the global trajectory optimization competition (GTOC) problem. As an application of GA optimization to Earth orbits, the problem of visiting a set of ground sites within a constrained time frame is solved. The J2 perturbation and zonal coverage are considered to design repeated Sun-synchronous orbits. Finally, a new set of orbits, the repeated shadow track orbits (RSTO), is introduced. The orbit parameters are optimized such that the shadow of a spacecraft on the Earth visits the same locations periodically every desired number of days.
Resumo:
Titanium oxide is an important semiconductor, which is widely applied for solar cells. In this research, titanium oxide nanotube arrays were synthesized by anodization of Ti foil in the electrolyte composed of ethylene glycol containing 2 vol % H2O and 0.3 wt % NH4F. The voltages of 40V-50V were employed for the anodizing process. Pore diameters and lengths of the TiO2 nanotubes were evaluated by field emission scanning electron microscope (FESEM). The obtained highly-ordered titanium nanotube arrays were exploited to fabricate photoelectrode for the Dye-sensitized solar cells (DSSCS). The TiO2 nanotubes based DSSCS exhibited an excellent performance with a high short circuit current and open circuit voltage as well as a good power conversion efficiency. Those can be attributed to the high surface area and one dimensional structure of TiO2 nanotubes, which could hold a large amount of dyes to absorb light and help electron percolation process to hinder the recombination during the electrons diffusion in the electrolyte.
Resumo:
In May of 1968, workers at the Kingston mine, a branch of the Calumet Division of Universal Oil Products walked off the site in protest of a safety issue involving a man-car. Knowing their contracts were due for negotiation in just a few months, the workers quickly returned, only to find themselves striking yet again just three months later, when negotiations failed. Requesting pay equal to that of the workers at the nearby White Pine mine was unacceptable to the heads of Universal Oil, the corporation which bought the long running Calumet & Hecla just a year earlier in 1968. The strike would last for nine months, ending in a total shutdown of all mining operations on the Keweenaw Peninsula, and bring an economic hardship to the area that would take decades to recover from. The Copper Strike of 1968-1969 is often forgotten, though extremely important to the story of the copper industry in Michigan, as well as to the United States. This paper has not yet been submitted.
Resumo:
The Työmies translation project involves the translation of that newspaper’s accounts of significant events from Michigan’s 1913-1914 Copper Strike. Työmies was a Finnish-language newspaper, published in Hancock, Michigan, whose socialist-unionist perspective on the strike differed markedly from that of the local English-language newspapers. This project is the first time significant portions of Työmies have been translated into English. In June of 2013, the presenter printed the translation of the Työmies account of the strike’s first day on a hand-operated Chandler & Price platen press. Thus, the presentation describes this unique project: the translation itself, the presenter’s search for necessary type and equipment, and the printing of the broadsides. The presentation will include a history of Työmies and the Strike, with an emphasis on ways in which human culture and language is reflected in the material culture of printing.
Resumo:
Three decades after the unsuccessful 1913-1914 strike at the Lake District copper mines of Michigan, workers organized as Local 584 of the International Union of Mine, Mill, and Smelter Workers (Mine Mill) signed a union contract with Calumet & Hecla Consolidated Copper Company. C & H was the last and most significant of the region’s three major copper mining companies to unionize during the three-year period from 1939 to 1942. This paper tells the untold history of the successful union drives in the Lake District’s copper mines, starting with Copper Range Company in 1939 and encompassing the subsequent unionizations of Quincy Mining Company and finally C & H. The paper develops thematic connections between the 1913-1914, including Mine Mill’s lineage to the Western Federation of Miners, parallel ethnic dimensions, and, most significantly, the contrasting role of state authority between the two time periods. The paper carries the Lake District’s labor history forward to 1955 to include United Steelworkers’ successful challenge to Mine Mill in 1950 and the strike of 1955. This history also incorporates source material from the papers of highly influential union organizer and representative Eugene Saari, material which to date has not been integrated into the labor history of the region. This paper has not yet been submitted.
Resumo:
Direction-of-arrival (DOA) estimation is susceptible to errors introduced by the presence of real-ground and resonant size scatterers in the vicinity of the antenna array. To compensate for these errors pre-calibration and auto-calibration techniques are presented. The effects of real-ground constituent parameters on the mutual coupling (MC) of wire type antenna arrays for DOA estimation are investigated. This is accomplished by pre-calibration of the antenna array over the real-ground using the finite element method (FEM). The mutual impedance matrix is pre-estimated and used to remove the perturbations in the received terminal voltage. The unperturbed terminal voltage is incorporated in MUSIC algorithm to estimate DOAs. First, MC of quarter wave monopole antenna arrays is investigated. This work augments an existing MC compensation technique for ground-based antennas and proposes reduction in MC for antennas over finite ground as compared to the perfect ground. A factor of 4 decrease in both the real and imaginary parts of the MC is observed when considering a poor ground versus a perfectly conducting one for quarter wave monopoles in the receiving mode. A simulated result to show the compensation of errors direction of arrival (DOA) estimation with actual realization of the environment is also presented. Secondly, investigations for the effects on received MC of λ/2 dipole arrays placed near real-earth are carried out. As a rule of thumb, estimation of mutual coupling can be divided in two regions of antenna height that is very near ground 0
Resumo:
The single-electron transistor (SET) is one of the best candidates for future nano electronic circuits because of its ultralow power consumption, small size and unique functionality. SET devices operate on the principle of Coulomb blockade, which is more prominent at dimensions of a few nano meters. Typically, the SET device consists of two capacitively coupled ultra-small tunnel junctions with a nano island between them. In order to observe the Coulomb blockade effects in a SET device the charging energy of the device has to be greater that the thermal energy. This condition limits the operation of most of the existing SET devices to cryogenic temperatures. Room temperature operation of SET devices requires sub-10nm nano-islands due to the inverse dependence of charging energy on the radius of the conducting nano-island. Fabrication of sub-10nm structures using lithography processes is still a technological challenge. In the present investigation, Focused Ion Beam based etch and deposition technology is used to fabricate single electron transistors devices operating at room temperature. The SET device incorporates an array of tungsten nano-islands with an average diameter of 8nm. The fabricated devices are characterized at room temperature and clear Coulomb blockade and Coulomb oscillations are observed. An improvement in the resolution limitation of the FIB etching process is demonstrated by optimizing the thickness of the active layer. SET devices with structural and topological variation are developed to explore their impact on the behavior of the device. The threshold voltage of the device was minimized to ~500mV by minimizing the source-drain gap of the device to 17nm. Vertical source and drain terminals are fabricated to realize single-dot based SET device. A unique process flow is developed to fabricate Si dot based SET devices for better gate controllability in the device characteristic. The device vi parameters of the fabricated devices are extracted by using a conductance model. Finally, characteristic of these devices are validated with the simulated data from theoretical modeling.