803 resultados para Mammary neoplasi
Resumo:
Biological transport of intact proteins across epithelial cells has been documented for many absorptive and secretory tissues. Immunoglobulins were some of the earliest studied proteins in this category. The transcellular transport (transcytosis) of immunoglobulins in neonatal health and development has been recognized; the process is especially significant with ungulates because they do not transcytose immunoglobulins across the placenta to the neonate. Rather, they depend upon mammary secretion of colostrum and intestinal absorption of immunoglobulins in order to provide intestinal and systemic defense until the young ungulate develops its own humoral defense mechanisms. The neonatal dairy calf's ability to absorb immunoglobulins from colostrum is assisted by a ~24 h "open gut" phenomenon where large proteins pass the intestinal epithelial cells and enter the systemic system. However, a critical problem recognized for newborn dairy calves is that an optimum mass of colostrum Immunoglobulin G (IgG) needs to be absorbed within that 24 h window in order to provide maximal resistance to disease. Many calves do not achieve the optimum because of poor quality colostrum. While many studies have focused on calf absorption, the principal cause of the problem resides with the extreme variation (g to kg) in the mammary gland's capacity to transfer blood IgG1 into colostrum. Colostrum is a unique mammary secretory product that is formed during late pregnancy when mammary cells are proliferating and differentiating in preparation for lactation. In addition to the transcytosis of immunoglobulins, the mammary gland also concentrates a number of circulating hormones into colostrum. Remarkably, the mechanisms in the formation of colostrum in ungulates have been rather modestly studied. The mechanisms and causes of this variation in mammary gland transcytosis of IgG1 are examined, evaluated, and in some cases, explained
Resumo:
Whereas whole first-milked colostrum IgG1 variation is documented, the IgG1 difference between the quarter mammary glands of dairy animals is unknown. First colostrum was quarter-collected from healthy udders of 8 multiparous dairy cows, all within 3h of parturition. Weight of colostrum produced by individual quarters was determined and a sample of each was frozen for subsequent analysis. Immunoglobulin G1 concentration (mg/mL) was measured by ELISA and total mass (g) was calculated. Standard addition method was used to overcome colostrum matrix effects and validate the standard ELISA measures. Analysis of the data showed that cow and quarter (cow) were significantly different in both concentration and total mass per quarter. Analysis of the mean IgG1 concentration of the front and rear quarters showed that this was not different, but the large variation in individual quarters confounds the analysis. This quarter difference finding indicates that each mammary gland develops a different capacity to accumulate precolostrum IgG1, whereas the circulating hormone concentrations that induce colostrogenesis reach the 4 glands similarly. This finding also shows that the variation in quarter colostrum production is a contributor to the vast variation in first milking colostrum IgG1 content. Finally, the data suggests other factors, such as locally acting autocrine or paracrine, epigenetic, or stochasticity, in gene regulation mechanisms may impinge on colostrogenesis capacity.
Resumo:
Hyperketonemia interferes with the metabolic regulation in dairy cows. It is assumed that metabolic and endocrine changes during hyperketonemia also affect metabolic adaptations during inflammatory processes. We therefore studied systemic and local intramammary effects of elevated plasma β-hydroxybutyrate (BHBA) before and during the response to an intramammary lipopolysaccharide (LPS) challenge. Thirteen dairy cows received intravenously either a Na-DL-β-OH-butyrate infusion (n = 5) to achieve a constant plasma BHBA concentration (1.7 ± 0.1 mmol/L), with adjustments of the infusion rates made based on immediate measurements of plasma BHBA every 15 min, or an infusion with a 0.9% NaCl solution (control; n = 8) for 56 h. Infusions started at 0900 h on d 1 and continued until 1700 h 2 d later. Two udder quarters were challenged with 200 μg of Escherichia coli LPS and 2 udder quarters were treated with 0.9% saline solution as control quarters at 48 h after the start of infusion. Blood samples were taken at 1 wk and 2h before the start of infusions as reference samples and hourly during the infusion. Mammary gland biopsies were taken 1 wk before, and 48 and 56 h (8h after LPS challenge) after the start of infusions. The mRNA abundance of key factors related to BHBA and fatty acid metabolism, and glucose transporters was determined in mammary tissue biopsies. Blood samples were analyzed for plasma glucose, BHBA, nonesterified fatty acid, urea, insulin, glucagon, and cortisol concentrations. Differences were not different for effects of BHBA infusion on the mRNA abundance of any of the measured target genes in the mammary gland before LPS challenge. Intramammary LPS challenge increased plasma glucose, cortisol, glucagon, and insulin concentrations in both groups but increases in plasma glucose and glucagon concentration were less pronounced in the Na-DL-β-OH-butyrate infusion group than in controls. In response to LPS challenge, plasma BHBA concentration decreased in controls and decreased also slightly in the BHBA-infused animals because the BHBA concentration could not be fully maintained despite a rapid increase in BHBA infusion rate. The change in mRNA abundance of citrate synthase in LPS quarters was significant between the 2 treatment groups. The results indicate that elevated circulating BHBA concentration inhibits gluconeogenesis before and during immune response to LPS challenge, likely because BHBA can replace glucose as an energy source.
Resumo:
Colostrum formation and lactogenesis in the mammary gland and the timing of parturition are regulated by endocrine signals. Changes in progesterone (P4) and prolactin (PRL) are considered key events that inhibit colostrum formation, trigger parturition, and signal the onset of lactation. The goal of our study was to determine if colostrum yield and composition and immunoglobulin transfer are affected by prepartum milking relative to the decrease in P4, peak of PRL, or occurrence of parturition. Twenty-three multiparous cows were randomly assigned to 1 of 2 groups: (1) control with first milking at 4h postcalving (CON, n=11), and (2) treatment group with first milking approximately 1d before calving and second milking at 4h after parturition (APM, n=12). Colostrum yields were recorded and proportional samples were analyzed for immunoglobulin G (IgG) concentration. Blood plasma samples for the analyses of P4 and PRL were collected 3 times daily at 8-h intervals for 4d prepartum and again taken at 4h after parturition. Total colostrum mass of APM cows was higher than that of CON cows. Immunoglobulin G concentration and protein content did not differ between antepartum milking in APM cows and postpartum milking in CON cows. Colostrum IgG concentration and protein content in APM cows at the postpartum milking were lower compared with the IgG concentration established at the prepartum (APM) and postpartum milkings of CON cows. Immunoglobulin G mass did not differ in first and second colostrum collection in APM cows but was lower compared with that of CON cows. The sum of IgG mass in APM cows (prepartum + postpartum collections) did not differ from that of CON cows. Lactose and fat in milk (concentration and mass) increased from first to second milking in APM cows. Total mass of lactose and fat in APM cows (prepartum + postpartum collections) was greater compared with that of CON cows. The finding that the time of milking relative to parturition, P4 decrease, and PRL peak slightly affected yield and quality of colostrum emphasizes the complex interactions of numerous endocrine and morphological changes occurring during colostrogenesis and lactogenesis in dairy cows. The considerably rapid transfer of immunoglobulins into colostrum of prepartum-milked cows within a few hours leads to the hypothesis that the transfer of IgG can be very fast and-contrary to earlier findings-persist at least until parturition.
Resumo:
Hormonal signals differentially regulate the timing of parturition, as well lactogenesis and, potentially, colostrum formation in the mammary gland. Non-neuronal serotonin (5-HT) is a homeostatic regulator of the mammary gland. In the current study, we manipulated the timing of first milking to investigate its effects on serum 5-HT and calcium concentrations in the maternal and calf circulation, as well as in colostrum. Twenty-three cows were randomly assigned to a control (CON; n=10) group, milked for the first time at 4h postcalving, or a treatment (TRT; n=13) group, milked for the first time approximately 1 d before calving in addition to 4h postcalving. Maternal blood samples were collected for 4 d precalving, 3 times daily, and 1 blood sample was taken 4h postcalving. Calf blood samples were collected 4 (before first colostrum feeding) and 12h after birth, and at 3 wk of age. Calves from both treatments were fed colostrum from their respective mothers. Serum 5-HT concentrations were greater in CON cows and decreased significantly in TRT cows after milking was initiated precalving (951 vs. 524 ± 111 ng/mL, respectively). Cow serum calcium concentrations were affected by time, beginning to decrease 1 d precalving until 4h postcalving, but this drop in serum calcium was more pronounced in TRT cows. Serum 5-HT and calcium concentrations were negatively correlated (r=-0.57) for the CON cows and positively correlated (r=0.6) for the TRT cows. Maternal calcium and 5-HT decreased similarly due to precalving milking. Calcium and 5-HT concentrations were greater in colostrum collected from TRT cows milked precalving. Overall, calves had higher circulating 5-HT concentrations than cows, and calves born to TRT cows had increased 5-HT concentrations compared with the CON. Precalving milking could affect 5-HT synthesis within the mammary gland and therefore affect maternal 5-HT and calcium concentrations. Further research is needed in ruminants to assess the extent of 5-HT placental transfer, its role on pre- and postnatal development of the calf, the importance of its presence in colostrum, and potential long-term effects on calf health
Resumo:
INTRODUCTION Anatomic imaging alone is often inadequate for tuning systemic treatment for individual tumor response. Optically based techniques could potentially contribute to fast and objective response monitoring in personalized cancer therapy. In the present study, we evaluated the feasibility of dual-modality diffuse reflectance spectroscopy-autofluorescence spectroscopy (DRS-AFS) to monitor the effects of systemic treatment in a mouse model for hereditary breast cancer. METHODS Brca1(-/-); p53(-/-) mammary tumors were grown in 36 mice, half of which were treated with a single dose of cisplatin. Changes in the tumor physiology and morphology were measured for a period of 1 week using dual-modality DRS-AFS. Liver and muscle tissues were also measured to distinguish tumor-specific alterations from systemic changes. Model-based analyses were used to derive different optical parameters like the scattering and absorption coefficients, as well as sources of intrinsic fluorescence. Histopathologic analysis was performed for cross-validation with trends in optically based parameters. RESULTS Treated tumors showed a significant decrease in Mie-scattering slope and Mie-to-total scattering fraction and an increase in both fat volume fraction and tissue oxygenation after 2 days of follow-up. Additionally, significant tumor-specific changes in the fluorescence spectra were seen. These longitudinal trends were consistent with changes observed in the histopathologic analysis, such as vital tumor content and formation of fibrosis. CONCLUSIONS This study demonstrates that dual-modality DRS-AFS provides quantitative functional information that corresponds well with the degree of pathologic response. DRS-AFS, in conjunction with other imaging modalities, could be used to optimize systemic cancer treatment on the basis of early individual tumor response.
Resumo:
BACKGROUND Small ruminant lentiviruses escaping efficient serological detection are still circulating in Swiss goats in spite of a long eradication campaign that essentially eliminated clinical cases of caprine arthritis encephalitis in the country. This strongly suggests that the circulating viruses are avirulent for goats.To test this hypothesis, we isolated circulating viruses from naturally infected animals and tested the in vitro and in vivo characteristics of these field isolates. METHODS Viruses were isolated from primary macrophage cultures. The presence of lentiviruses in the culture supernatants was monitored by reverse transcriptase assay. Isolates were passaged in different cells and their cytopathogenic effects monitored by microscopy. Proviral load was quantified by real-time PCR using customized primer and probes. Statistical analysis comprised Analysis of Variance and Bonferroni Multiple Comparison Test. RESULTS The isolated viruses belonged to the small ruminant lentiviruses A4 subtype that appears to be prominent in Switzerland. The 4 isolates replicated very efficiently in macrophages, displaying heterogeneous phenotypes, with two isolates showing a pronounced cytopathogenicity for these cells. By contrast, all 4 isolates had a poor replication capacity in goat and sheep fibroblasts. The proviral loads in the peripheral blood and, in particular, in the mammary gland were surprisingly high compared to previous observations. Nevertheless, these viruses appear to be of low virulence for goats except for the mammary gland were histopathological changes were observed. CONCLUSIONS Small ruminant lentiviruses continue to circulate in Switzerland despite a long and expensive caprine arthritis encephalitis virus eradication campaign. We isolated 4 of these lentiviruses and confirmed their phylogenetic association with the prominent A4 subtype. The pathological and histopathological analysis of the infected animals supported the hypothesis that these A4 viruses are of low pathogenicity for goats, with, however, a caveat about the potentially detrimental effects on the mammary gland. Moreover, the high proviral load detected indicates that the immune system of the animals cannot control the infection and this, combined with the phenotypic plasticity observed in vitro, strongly argues in favour of a continuous and precise monitoring of these SRLV to avoid the risk of jeopardizing a long eradication campaign.
Resumo:
All-trans retinoic acid (ATRA), a pan-retinoic acid receptor (RAR) agonist, is, along with other retinoids, a promising therapeutic agent for the treatment of a variety of solid tumors. On the one hand, preclinical studies have shown promising anticancer effects of ATRA in breast cancer; on the other hand, resistances occurred. Autophagy is a cellular recycling process that allows the degradation of bulk cellular contents. Tumor cells may take advantage of autophagy to cope with stress caused by anticancer drugs. We therefore wondered if autophagy is activated by ATRA in mammary tumor cells and if modulation of autophagy might be a potential novel treatment strategy. Indeed, ATRA induces autophagic flux in ATRA-sensitive but not in ATRA-resistant human breast cancer cells. Moreover, using different RAR agonists as well as RARα-knockdown breast cancer cells, we demonstrate that autophagy is dependent on RARα activation. Interestingly, inhibition of autophagy in breast cancer cells by either genetic or pharmacological approaches resulted in significantly increased apoptosis under ATRA treatment and attenuated epithelial differentiation. In summary, our findings demonstrate that ATRA-induced autophagy is mediated by RARα in breast cancer cells. Furthermore, inhibition of autophagy results in enhanced apoptosis. This points to a potential novel treatment strategy for a selected group of breast cancer patients where ATRA and autophagy inhibitors are applied simultaneously.
Resumo:
BACKGROUND Definitive fate of the coronary endothelium after implantation of a drug-eluting stent remains unclear, but evidence has accumulated that treatment with rapamycin-eluting stents impairs endothelial function in human coronary arteries. The aim of our study was to demonstrate this phenomenon on functional, morphological and biochemical level in human internal thoracic arteries (ITA) serving as coronary artery model. METHODS After exposure to rapamycin for 20 h, functional activity of ITA rings was investigated using the organ bath technique. Morphological analysis was performed by scanning electron microscopy and evaluated by two independent observers in blinded fashion. For measurement of endothelial nitric oxide synthase (eNOS) release, mammalian target of rapamycin (mTOR) and protein kinase B (PKB) (Akt) activation, Western blotting on human mammary epithelial cells-1 and on ITA homogenates was performed. RESULTS Comparison of the acetylcholine-induced relaxation revealed a significant concentration-dependent decrease to 66 ± 7 % and 36 ± 7 % (mean ± SEM) after 20-h incubation with 1 and 10 μM rapamycin. Electron microscopic evaluation of the endothelial layer showed no differences between controls and samples exposed to 10 μM rapamycin. Western blots after 20-h incubation with rapamycin (10 nM-1 μM) revealed a significant and concentration-dependent reduction of p (Ser 1177)-eNOS (down to 38 ± 8 %) in human mammary epithelial cells (Hmec)-1. Furthermore, 1 μM rapamycin significantly reduced activation of p (Ser2481)-mTOR (58 ± 11 %), p (Ser2481)-mTOR (23 ± 4 %) and p (Ser473)-Akt (38 ± 6 %) in ITA homogenates leaving Akt protein levels unchanged. CONCLUSIONS The present data suggests that 20-h exposure of ITA rings to rapamycin reduces endothelium-mediated relaxation through down-regulation of Akt-phosphorylation via the mTOR signalling axis within the ITA tissue without injuring the endothelial cell layer.
Resumo:
Docetaxel (Taxotere(®) ) is currently used intravenously as an anticancer agent and is primarily metabolized by Cytochrome P450 3A (CYP3A). The HIV protease inhibitor ritonavir, a strong CYP3A4 inhibitor, decreased first-pass metabolism of orally administered docetaxel. Anticancer effects of ritonavir itself have also been described. We here aimed to test whether ritonavir co-administration could decrease intratumoral metabolism of intravenously administered docetaxel and thus increase the antitumor activity of docetaxel in an orthotopic, immunocompetent mouse model for breast cancer. Spontaneously arising K14cre;Brca1(F/F) ;p53(F/F) mouse mammary tumors were orthotopically implanted in syngeneic mice lacking Cyp3a (Cyp3a(-/-) ) to limit ritonavir effects on systemic docetaxel clearance. Over 3 weeks, docetaxel (20 mg/kg) was administered intravenously once weekly, with or without ritonavir (12.5 mg/kg) administered orally for 5 days per week. Untreated mice were used as control for tumor growth. Ritonavir treatment alone did not significantly affect the median time of survival (14 vs. 10 days). Median time of survival in docetaxel-treated mice was 54 days. Ritonavir co-treatment significantly increased this to 66 days, and substantially reduced relative average tumor size, without altering tumor histology. Concentrations of the major docetaxel metabolite M2 in tumor tissue were reduced by ritonavir co-administration, whereas tumor RNA expression of Cyp3a was unaltered. In this breast cancer model, we observed no direct antitumor effect of ritonavir alone, but we found enhanced efficacy of docetaxel treatment when combined with ritonavir. Our data, therefore, suggest that decreased docetaxel metabolism inside the tumor as a result of Cyp3a inhibition contributes to increased antitumor activity.
Resumo:
Diagnostic records are a key feature of any cancer epidemiology, prevention or control strategy for man and animals. Therefore, the information stored in human and animal cancer registries is essential for undertaking comparative epidemiological, pathogenic and therapeutic research. This study presents the Swiss Canine Cancer Registry, containing case data compiled between 1955 and 2008. The data consist of pathology diagnostic records issued by three veterinary diagnostic laboratories in Switzerland. The tumours were classified according to the guidelines of the International Classification of Oncology for Humans on the basis of tumour type, malignancy and body location. The dogs were classified according to breed, age, sex, neuter status and place of residence. The diagnostic data were correlated with data on the Swiss general dog population and the incidence of cancer in dogs was thus investigated. A total of 67,943 tumours were diagnosed in 121,963 dogs and 47.07% of these were malignant. The most common tumour location was the skin (37.05%), followed by mammary glands (23.55%) and soft tissue (13.66%). The most common tumour diagnoses were epithelial (38.45%), mesenchymal (35.10%) and lymphoid tumours (13.23%). The results are compared with data in other canine registries and similarities in tumour distribution and incidence are noted. It is hoped that this study will mark the beginning of continuous registration of dog tumours in Switzerland, which, in turn, will serve as a reference for research in the fields of animal and human oncology.
Resumo:
Transplantation of cryopreserved ovarian tissue has been shown to induce pregnancies and puberty successfully. Therefore, using cryopreserved ovarian tissue to postpone menopause (tissue hormone therapy [THT]) seems to be an interesting option to avoid conventional menopause hormone therapy (MHT). Pregnancy induction and replacing MHT by THT, however, are completely different topics as different requirements need to be met. First, MHT requires long-lasting and continuous hormone production. It still needs to be proven if the transplanted tissue is active for at least 5 years with a continuous follicle growth to avoid phases with low oestrogen production, which would otherwise cause menopausal symptoms and could reduce the postulated benefit for women's health. Second, the advantage of a physiological hormone production over a non-physiological MHT is still hypothetical. Third, women who have undergone hysterectomies who do not need progesterone for endometrial protection would only require oestrogens, imposing more health benefits (cardiovascular system, mammary gland) than oestrogen and progesterone production or replacement. Therefore, transplanting ovarian tissue exclusively to postpone menopause is endocrinologically doubtful and should only be carried out within clinical trials.
Resumo:
o,p'-DDT is a major component of the pesticide DDT (dichlorodiphenyltrichloro ethane, technical grade). Although possessing little insecticidal ability, the o,p'- isomer has two major biological activities which affect mammalian reproductive systems: it is estrogenic, and it induces hepatic mixed function oxidase enzymes. The focus of this work is the characterization of the estrogenic properties of o,p'-DDT in rodents.^ Initial studies examined the ability of o,p'-DDT to bind to and interact with elements of the estrogen receptor system. In an in vitro assay, DDT was shown to compete with 17(beta)-estradiol (E(,2)) for binding to cytoplasmic estrogen receptors (R(,c)) from normal and neoplastic tissues in two rodent species. The following phenomena were studied by measuring receptor levels from uteri (whole uteri and/or uterine cell types) taken from immature ovariectomized rats given one acute injection of o,p'-DDT or E(,2): the translocation of the R(,c) to the nucleus, nuclear receptor (R(,n)) retention patterns, and the subsequent reappearance of R(,c) in the cytoplasm.^ The magnitude and temporal patterns of the biological responses of uteri from similar immature rats were compared following o,p'-DDT and E(,2) exposure. The responses examined included increased "Induced Protein" synthesis (in vitro); and uterine wet weight, DNA synthesis and mitosis (in vivo).^ From dose-response data, correlations were made between R(,n) levels and levels of subsequent biological responses. The aim was to lend support to the premise that biological responses to o,p'-DDT exposure occur as a result of its interaction with the classical estrogen receptor system. Correlation coefficients of 0.95 to 0.98 were obtained between R(,n) levels and levels of responses examined, strongly supporting this hypothesis.^ Finally, o,p'-DDT was shown to be as effective as E(,2) in supporting the growth of a transplantable estrogen-responsive mammary tumor in adult rats (although it was unable to support the growth of a transplantable estrogen-dependent renal tumor in hamsters). While the positive result cannot be directly extrapolated to human or animal exposure to environmental estrogens, it suggests that hyperplastic responses of estrogen sensitive tissues should be considered as a possible toxicity of o,p'-DDT, related compounds having estrogenic properties, and other environmental estrogens. ^
Resumo:
The major complications for tumor therapy are (i) tumor spread (metastasis); (ii) the mixed nature of tumors (heterogeneity); and (iii) the capacity of tumors to evolve (progress). To study these tumor characteristics, the rat 13762NF mammary adenocarcinoma was cloned and studied for metastatic properties and sensitivities to therapy (chemotherapy, radiation and hyperthermia). The cell clones were heterogeneous and no correlation between metastatic potential and therapeutic sensitivities was observed. Further, these phenotypes were unstable during passage in vitro; yet, the changes were clone dependent and reproducible using different cryoprotected cell stocks. To understand the phenotypic instability, subclones were isolated from low and high passage cell clones. Each subclone possessed a unique composite phenotype. Again, no apparent correlation was seen between metastatic potential and sensitivity to therapy. The results demonstrated that (1) tumor cells are heterogeneous for multiple phenotypes; (2) tumor cells are unstable for multiple phenotypes; (3) the magnitude, direction and time of occurrence of phenotypic drift is clone dependent; (4) the sensitivity of cell clones to ionizing radiation (gamma or heat) and chemotherapy agents is independent of their metastatic potential; (5) shifts in metastatic potential and sensitivity to therapy may occur simultaneously but are not linked; and (6) tumor cells independently diverge to form several subpopulations with unique phenotypic profiles. ^
Resumo:
Recent publications have questioned the origin of the MDA-MB-435 breast cancer cell line and have suggested that it is of melanocyte origin rather than breast epithelial origin. The data presented herein show unequivocally that MDA-MB-435 does express breast epithelial markers and produces milk-specific lipids. The data also indicated that MDA-MB-435 does express some melanocyte proteins but this expression occurs in the same MDA-MB-435 cells that express breast epithelial proteins. Although MDA-MB-435 does not strictly adhere to a breast lineage, it does retain breast specific markers and is thus valid as an experimental cell line in breast cancer studies. ^ Heregulinβ1 (HRGβ1) has been shown to both stimulate and inhibit breast tumorigenic and metasastasic phenotypes. Some studies used only the EGF-like domain of the extracellular domain of HRGβ1 while others used bacterially-expressed HRGβ1. Our in vitro data demonstrated that the full-length extracellular domain of human HRGβ1 reduced clonal growth of MDA-MB-435 breast cancer cells but stimulated apoptosis in MDA-MB-435 and MCF-7 breast cancer cells. In addition, mammalian-expressed HRGβ1 did not dramatically affect matrix metalloproteinase-9 activity but did inhibit cell motility of MDA-MB-435 and MCF-7 cells. Taken together, the in vitro data indicated that HRGβ1 inhibits metastasis-associated properties. ^ The in vivo data demonstrated that inducible expression of the full-length extracellular domain of human HRGβ1 in MDA-MB-435 cells reduced tumor volume and cell proliferation but increased apoptosis of cells injected at the mammary fat pad in nude mice. More importantly, HRGβ1 reduced the number of metastases observed by a spontaneous metastasis assay. Taken together, these data indicate that the full-length extracellular domain of human HRGβ1 has the net effect of inhibiting breast cancer metastasis. ^