908 resultados para Macadamia nut -- Genetics.
Resumo:
Background - Twenty percent of children outgrow peanut allergy and 10% outgrow tree nut allergy. Resolution can be confirmed by a food challenge. Little is known about the psychosocial impact of the challenge. We aimed to investigate effects of a food challenge on anxiety, stress and quality of life (QoL) in children and their mothers on the day of a food challenge to peanuts or nuts, and in the months following the challenge. Methods - One hundred and three families participated. Forty children undergoing food challenges to access resolution of allergy, and their mothers, completed validated questionnaires to measure generic and food specific quality of life, stress and anxiety prior to challenge, on the day of investigation and 3–6 months later. Sixty-three children with no clinical indication to challenge (i.e. in the opinion of the allergist had persistent allergy) acted as comparison group completing questionnaires 3–6 months apart. Results - Mothers reported raised anxiety on the day of challenge (P = 0.007), but children were less anxious. The children (P = 0.01) and mothers (P = 0.01) had improved food-related, but not general, QoL 3–6 months following challenge. Children reported lower anxiety levels following the challenge (P = 0.02), but anxiety remained unchanged in mothers. The improvements in maternal and children's QoL and anxiety levels were irrespective of the challenge outcome and despite co-existing food allergies in 50% of children. Conclusions - Mothers experienced increased anxiety on the day of food challenge, unlike the children, perhaps reflecting the differences in their perceived risks. Food challenges are associated with improved food-related QoL in the following months even in those with a positive challenge.
Resumo:
Melaleuca quinquenervia (Cav.) Blake (Myrtaceae) was imported into Florida from Australia over a century ago as a landscape plant. A favorable climate and periodic wildfires helped M. quinquenervia thrive; it now occupies about 200,000 hectares in southern Florida. A biological control (i.e., biocontrol) program against M. quinquenervia has been initiated, but not all biocontrol releases are successful. Some scientists have argued that poor biocontrol agent success may relate to genetic differences among populations of invasive weeds. I tested this premise by determining (1) the number and origins of M. quinquenervia introductions into Florida, (2) whether multiple introduction events resulted in the partitioning of Florida's M. quinquenervia populations into discrete biotypes, and (3) whether Oxyops vitiosa, an Australia snout beetle imported to control this weed, might discriminate among putative M. quinquenervia biotypes. Careful scrutiny of early horticultural catalogs and USDA plant introduction records suggested at least six distinct introduction events. Allozyme analyses indicated that the pattern of these introductions, and the subsequent redistribution of progeny, has resulted in geographic structuring of the populations in southern Florida. For example, trees on Florida's Gulf Coast had a greater effective number of alleles and exhibited greater heterozygosity than trees on the Atlantic Coast. Essential oil yields from M. quinquenervia leaves followed a similar trend; Gulf Coast trees yielded nearly twice as much oil as Atlantic Coast trees when both were grown in a common garden. These differences were partially explained by the predominance of a chemical phenotype (chemotype) very rich in the sesquiterpene (E)-nerolidol in M. quinquenervia trees from the Gulf Coast, but rich in a mixture of the monoterpene 1,8-cineole and the sesquiterpene viridiflorol in trees from the Atlantic Coast. Performance of O. vitiosa differed dramatically in laboratory studies depending on the chemotype of the foliage they were fed. Larval survivorship was four-fold greater on the (E)-nerolidol chemotype. Growth was also greater, with adult O. vitiosa gaining nearly 50% more biomass on the (E)-nerolidol plants than on the second chemotype. The results of this study thus confirmed the premise that plant genotype can affect the population dynamics of insects released as weed biocontrols. ^
Resumo:
The investigations of human mitochondrial DNA (mtDNA) have considerably contributed to human evolution and migration. The Middle East is considered to be an essential geographic area for human migrations out of Africa since it is located at the crossroads of Africa, and the rest of the world. United Arab Emirates (UAE) population inhabits the eastern part of Arabian Peninsula and was investigated in this study. Published data of 18 populations were included in the statistical analysis. The diversity indices showed (1) high genetic distance among African populations and (2) high genetic distance between African populations and non-African populations. Asian populations clustered together in the NJ tree between the African and European populations. MtDNA haplotypes database of the UAE population was generated. By incorporating UAE mtDNA dataset into the existing worldwide mtDNA database, UAE Forensic Laboratories will be able to analyze future mtDNA evidence in a more significant and consistent manner. ^
Resumo:
Speciation can be understood as a continuum occurring at different levels, from population to species. The recent molecular revolution in population genetics has opened a pathway towards understanding species evolution. At the same time, speciation patterns can be better explained by incorporating a geographic context, through the use of geographic information systems (GIS). Phaedranassa (Amaryllidaceae) is a genus restricted to one of the world’s most biodiverse hotspots, the Northern Andes. I studied seven Phaedranassa species from Ecuador. Six of these species are endemic to the country. The topographic complexity of the Andes, which creates local microhabitats ranging from moist slopes to dry valleys, might explain the patterns of Phaedranassa species differentiation. With a Bayesian individual assignment approach, I assessed the genetic structure of the genus throughout Ecuador using twelve microsatellite loci. I also used bioclimatic variables and species geographic coordinates under a Maximum Entropy algorithm to generate distribution models of the species. My results show that Phaedranassa species are genetically well-differentiated. Furthermore, with the exception of two species, all Phaedranassa showed non-overlapping distributions. Phaedranassa viridiflora and P. glauciflora were the only species in which the model predicted a broad species distribution, but genetic evidence indicates that these findings are likely an artifact of species delimitation issues. Both genetic differentiation and nonoverlapping geographic distribution suggest that allopatric divergence could be the general model of genetic differentiation. Evidence of sympatric speciation was found in two geographically and genetically distinct groups of P. viridiflora. Additionally, I report the first register of natural hybridization for the genus. The findings of this research show that the genetic differentiation of species in an intricate landscape as the Andes does not necessarily show a unique trend. Although allopatric speciation is the most common form of speciation, I found evidence of sympatric speciation and hybridization. These results show that the processes of speciation in the Andes have followed several pathways. The mixture of these processes contributes to the high biodiversity of the region.
Resumo:
Background: Too little information is available on Sri Lanka’s current capacity to provide community genetic services—antenatal genetic services in particular—to understand whether building that capacity could further improve and reduce disparity in maternal and child health. This qualitative research project seeks to gather information on congenital disorders, routine antenatal care, and the current state of antenatal screening testing services within that routine antenatal to assess the feasibility of and the need for scaling up antenatal genetics services in Sri Lanka. Methods: Nineteen key informant (KI) interviews were conducted with stakeholders in antenatal care and genetic services. Seven focus group discussions were held with a total of 56 Public Health Midwives (PHMs), the health workers responsible for antenatal care at the field level. Transcripts for all interviews and FGDs were analyzed for key themes, and themes were categorized to address the specific aims of the project. Results: Antenatal genetic services play a minor role in antenatal care, with screening and diagnostic procedures available in the private sector and paid for out-of-pocket. KIs and PHMs expect that demand for antenatal genetic services will increase as patients’ purchasing power and knowledge grow but note that prohibitive abortion laws limit the ability of patients to act on test results. Genetic services compete for limited financial and human resources in the free public health system, and inadequate information on the prevalence of congenital disorders limits the ability to understand whether funding for services related to those disorders should be increased. A number of alternatives to scaling up antenatal genetic services within the free health system might be better suited to the Sri Lankan structural and social context. Conclusions: Scaling up antenatal genetic services within the public health system is not feasible in the current financial, legal, and human resource context. Yet current availability and utilization patterns contribute to regional and economic disparities, suggesting that stasis will not bring continued improvements in maternal and child health. More information on the burden of congenital disorders is necessary to fully understand if and how antenatal genetic service availability should be increased in Sri Lanka, but even before that information is gathered, examination of policies for patient referral, termination of pregnancy, and government support for individuals with genetic disease are steps that might bring extend improvements and reduce disparity in maternal and child health.
Resumo:
A previous genome-wide association study (GWAS) of more than 100,000 individuals identified molecular-genetic predictors of educational attainment. We undertook in-depth life-course investigation of the polygenic score derived from this GWAS using the four-decade Dunedin Study (N = 918). There were five main findings. First, polygenic scores predicted adult economic outcomes even after accounting for educational attainments. Second, genes and environments were correlated: Children with higher polygenic scores were born into better-off homes. Third, children's polygenic scores predicted their adult outcomes even when analyses accounted for their social-class origins; social-mobility analysis showed that children with higher polygenic scores were more upwardly mobile than children with lower scores. Fourth, polygenic scores predicted behavior across the life course, from early acquisition of speech and reading skills through geographic mobility and mate choice and on to financial planning for retirement. Fifth, polygenic-score associations were mediated by psychological characteristics, including intelligence, self-control, and interpersonal skill. Effect sizes were small. Factors connecting DNA sequence with life outcomes may provide targets for interventions to promote population-wide positive development.
Resumo:
The science of genetics is undergoing a paradigm shift. Recent discoveries, including the activity of retrotransposons, the extent of copy number variations, somatic and chromosomal mosaicism, and the nature of the epigenome as a regulator of DNA expressivity, are challenging a series of dogmas concerning the nature of the genome and the relationship between genotype and phenotype. DNA, once held to be the unchanging template of heredity, now appears subject to a good deal of environmental change; considered to be identical in all cells and tissues of the body, there is growing evidence that somatic mosaicism is the normal human condition; and treated as the sole biological agent of heritability, we now know that the epigenome, which regulates gene expressivity, can be inherited via the germline. These developments are particularly significant for behavior genetics for at least three reasons: First, these phenomena appear to be particularly prevalent in the human brain, and likely are involved in much of human behavior; second, they have important implications for the validity of heritability and gene association studies, the methodologies that largely define the discipline of behavior genetics; and third, they appear to play a critical role in development during the perinatal period, and in enabling phenotypic plasticity in offspring in particular. I examine one of the central claims to emerge from the use of heritability studies in the behavioral sciences, the principle of “minimal shared maternal effects,” in light of the growing awareness that the maternal perinatal environment is a critical venue for the exercise of adaptive phenotypic plasticity. This consideration has important implications for both developmental and evolutionary biology
Resumo:
There is growing evidence that the complexity of higher organisms does not correlate with the ‘complexity’ of the genome (the human genome contains fewer protein coding genes than corn, and many genes are preserved across species). Rather, complexity is associated with the complexity of the pathways and processes whereby the cell utilises the deoxyribonucleic acid molecule, and much else, in the process of phenotype formation. These pro- cesses include the activity of the epigenome, noncoding ribonucleic acids, alternative splicing and post-transla- tional modifications. Not accidentally, all of these pro- cesses appear to be of particular importance for the human brain, the most complex organ in nature. Because these processes can be highly environmentally reactive, they are a key to understanding behavioural plasticity and highlight the importance of the developmental process in explaining behavioural outcomes.
Resumo:
A life-course perspective is committed to the proposition that from conception to death, all human outcomes are the result of a continual interaction between the indi- vidual and all of the environments that he or she inhabits at any given point in time. Early development is a critical period, a window of time during the life course when a given exposure can have a critical or permanent in uence on later outcomes. But the impact of exposures upon outcomes does not end at any speci c point in time, inasmuch as life is a continuing interactive and adaptive process. We now know that what applies to human beings also applies to their genomes. The “outcome” of any gene at any given point in time (whether or not it is used to transcribe a particular protein, what form of that protein, and how much) is a product of the interaction between the gene and the multiple environments of which it is a part, which include the epigenome, the cell, the biological human, and the assorted environments he or she occupies (e.g., geographical, socioeconomic, ethnic, etc.). Early life experiences can permanently “reprogram” the epigenome and gene transcription with life-long behavioral consequences. At the same time, the epigenome as well as the genome continue to be environmentally responsive throughout the life course.
Resumo:
Vascular cognitive impairment (VCI), including its severe form, vascular dementia (VaD), is the second most common form of dementia. The genetic etiology of sporadic VCI remains largely unknown. We previously conducted a systematic review and meta-analysis of all published genetic association studies of sporadic VCI prior to 6 July 2012, which demonstrated that APOE (ɛ4, ɛ2) and MTHFR (rs1801133) variants were associated with susceptibility for VCI. De novo genotyping was conducted in a new independent relatively large collaborative European cohort of VaD (nmax = 549) and elderly non-demented samples (nmax = 552). Where available, genotype data derived from Illumina's 610-quad array for 1210 GERAD1 control samples were also included in analyses of genes examined. Associations were tested using the Cochran-Armitage trend test: MTHFR rs1801133 (OR = 1.36, 95% CI 1.16-1.58, p = <0.0001), APOE rs7412 (OR = 0.62, 95% CI 0.42-0.90, p = 0.01), and APOE rs429358 (OR = 1.59, 95% CI 1.17-2.16, p = 0.003). Association was also observed with APOE epsilon alleles; ɛ4 (OR = 1.85, 95% CI 1.35-2.52, p = <0.0001) and ɛ2 (OR = 0.67, 95% CI 0.46-0.98, p = 0.03). Logistic Regression and Bonferroni correction in a subgroup of the cohort adjusted for gender, age, and population maintained the association of APOE rs429358 and ɛ4 allele.
Resumo:
Purpose: Mounting evidence supports the clinical significance of gene mutations and immunogenetic features in common mature B-cell malignancies.
Experimental Design: We undertook a detailed characterization of the genetic background of splenic marginal zone lymphoma (SMZL), using targeted resequencing and explored potential clinical implications in a multinational cohort of 175 patients with SMZL.
Results: We identified recurrent mutations in TP53 (16%), KLF2 (12%), NOTCH2 (10%), TNFAIP3 (7%), MLL2 (11%), MYD88 (7%), and ARID1A (6%), all genes known to be targeted by somatic mutation in SMZL. KLF2 mutations were early, clonal events, enriched in patients with del(7q) and IGHV1-2*04 B-cell receptor immunoglobulins, and were associated with a short median time to first treatment (0.12 vs. 1.11 years; P = 0.01). In multivariate analysis, mutations in NOTCH2 [HR, 2.12; 95% confidence interval (CI), 1.02–4.4; P = 0.044] and 100% germline IGHV gene identity (HR, 2.19; 95% CI, 1.05–4.55; P = 0.036) were independent markers of short time to first treatment, whereas TP53 mutations were an independent marker of short overall survival (HR, 2.36; 95 % CI, 1.08–5.2; P = 0.03).
Conclusions: We identify key associations between gene mutations and clinical outcome, demonstrating for the first time that NOTCH2 and TP53 gene mutations are independent markers of reduced treatment-free and overall survival, respectively.
Resumo:
Single poem included in this anthology which is currently a set text on the English 'A' level schools curriculum (England).