961 resultados para Lyric song
Resumo:
In steel refining process, an increase of interfacial area between the metal and slag through the metal droplets emulsified into the slag, so-called ``metal emulsion'', is one prevailing view for improving the reaction rate. The formation of metal emulsion was experimentally evaluated using Al-Cu alloy as metal phase and chloride salt as slag phase under the bottom bubbling condition. Samples were collected from the center of the salt phase in the container. Large number of metal droplets were separated from the salt by dissolving it into water. The number, surface area, and weight of the droplets increased with the gas flow rate and have local maximum values. The formation and sedimentation rates of metal droplets were estimated using a mathematical model. The formation rate increased with the gas flow rate and has a local maximum value as a function of gas flow rate, while the sedimentation rate is independent of the gas flow rate under the bottom bubbling condition. Three types of formation mode of metal emulsion, which occurred by the rupture of metal film around the bubble, were observed using high speed camera. During the process, an elongated column covered with metal film was observed with the increasing gas flow rate. This elongated column sometimes reached to the top surface of the salt phase. In this case, it is considered that fine droplets were not formed and in consequence, the weight of metal emulsion decreased at higher gas flow rate.
Resumo:
Metal-slag emulsion is an important process to enhance the reaction rate between the two phases; thus, it improves the heat and mass transfer of the process significantly. Various experimental studies have been carried out, and some system specific relations have been proposed by various investigators. A unified, theoretical study is lacking to model this complex phenomenon. Therefore, two simple models based on fundamental laws for metal droplet velocity (both ascending and descending) and bubble velocity, as well as its position at any instant of time, have been proposed. Analytical solutions have been obtained for the developed equations. Analytical solutions have been verified for the droplet velocity, traveling time, and size distribution in slag phase by performing high-temperature experiments in a Pb-salt system and comparing the obtained data with theory. The proposed model has also been verified with published experimental data for various liquid systems with a wide range of physical properties. A good agreement has been found between the analytical solution and the experimental and published data in all cases.
Resumo:
Mobile P2P technology provides a scalable approach for content delivery to a large number of users on their mobile devices. In this work, we study the dissemination of a single item of content (e. g., an item of news, a song or a video clip) among a population of mobile nodes. Each node in the population is either a destination (interested in the content) or a potential relay (not yet interested in the content). There is an interest evolution process by which nodes not yet interested in the content (i.e., relays) can become interested (i.e., become destinations) on learning about the popularity of the content (i.e., the number of already interested nodes). In our work, the interest in the content evolves under the linear threshold model. The content is copied between nodes when they make random contact. For this we employ a controlled epidemic spread model. We model the joint evolution of the copying process and the interest evolution process, and derive joint fluid limit ordinary differential equations. We then study the selection of parameters under the content provider's control, for the optimization of various objective functions that aim at maximizing content popularity and efficient content delivery.
Resumo:
Song-selection and mood are interdependent. If we capture a song’s sentiment, we can determine the mood of the listener, which can serve as a basis for recommendation systems. Songs are generally classified according to genres, which don’t entirely reflect sentiments. Thus, we require an unsupervised scheme to mine them. Sentiments are classified into either two (positive/negative) or multiple (happy/angry/sad/...) classes, depending on the application. We are interested in analyzing the feelings invoked by a song, involving multi-class sentiments. To mine the hidden sentimental structure behind a song, in terms of “topics”, we consider its lyrics and use Latent Dirichlet Allocation (LDA). Each song is a mixture of moods. Topics mined by LDA can represent moods. Thus we get a scheme of collecting similar-mood songs. For validation, we use a dataset of songs containing 6 moods annotated by users of a particular website.
Resumo:
Many industrial processes involve reaction between the two immiscible liquid systems. It is very important to increase the efficiency and productivity of such reactions. One of the important processes that involve such reactions is the metal-slag system. To increase the reaction rate or efficiency, one must increase the contact surface area of one of the phases. This is either done by emulsifying the slag into the metal phase or the metal into the slag phase. The latter is preferred from the stability viewpoint. Recently, we have proposed a simple and elegant mathematical model to describe metal emulsification in the presence of bottom gas bubbling. The same model is being extended here. The effect of slag and metal phase viscosity, density and metal droplet size on the metal droplet velocity in the slag phase is discussed for the above mentioned metal emulsification process. The models results have been compared with experimental data.
Resumo:
Acoustic signal variation and female preference for different signal components constitute the prerequisite framework to study the mechanisms of sexual selection that shape acoustic communication. Despite several studies of acoustic communication in crickets, information on both male calling song variation in the field and female preference in the same system is lacking for most species. Previous studies on acoustic signal variation either were carried out on populations maintained in the laboratory or did not investigate signal repeatability. We therefore used repeatability analysis to quantify variation in the spectral, temporal and amplitudinal characteristics of the male calling song of the field cricket Plebeiogryllus guttiventris in a wild population, at two temporal scales, within and across nights. Carrier frequency (CF) was the most repeatable character across nights, whereas chirp period (CP) had low repeatability across nights. We investigated whether female preferences were more likely to be based on features with high (CF) or low (CP) repeatability. Females showed no consistent preferences for CF but were significantly more attracted towards signals with short CPs. The attractiveness of lower CP calls disappeared, however, when traded off with sound pressure level (SPL). SPL was the only acoustic feature that was significantly positively correlated with male body size. Since relative SPL affects female phonotaxis strongly and can vary unpredictably based on male spacing, our results suggest that even strong female preferences for acoustic features may not necessarily translate into greater advantage for males possessing these features in the field. (C) 2013 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6-7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification.
Resumo:
Objective identification and description of mimicked calls is a primary component of any study on avian vocal mimicry but few studies have adopted a quantitative approach. We used spectral feature representations commonly used in human speech analysis in combination with various distance metrics to distinguish between mimicked and non-mimicked calls of the greater racket-tailed drongo, Dicrurus paradiseus and cross-validated the results with human assessment of spectral similarity. We found that the automated method and human subjects performed similarly in terms of the overall number of correct matches of mimicked calls to putative model calls. However, the two methods also misclassified different subsets of calls and we achieved a maximum accuracy of ninety five per cent only when we combined the results of both the methods. This study is the first to use Mel-frequency Cepstral Coefficients and Relative Spectral Amplitude - filtered Linear Predictive Coding coefficients to quantify vocal mimicry. Our findings also suggest that in spite of several advances in automated methods of song analysis, corresponding cross-validation by humans remains essential.
Resumo:
We demonstrate here that supramolecular interactions enhance the sensitivity towards detection of electron-deficient nitro-aromatic compounds (NACs) over discrete analogues. NACs are the most commonly used explosive ingredients and are common constituents of many unexploded landmines used during World WarII. In this study, we have synthesised a series of pyrene-based polycarboxylic acids along with their corresponding discrete esters. Due to the electron richness and the fluorescent behaviour of the pyrene moiety, all the compounds act as sensors for electron-deficient NACs through a fluorescence quenching mechanism. A Stern-Volmer quenching constant determination revealed that the carboxylic acids are more sensitive than the corresponding esters towards NACs in solution. The high sensitivity of the acids was attributed to supramolecular polymer formation through hydrogen bonding in the case of the acids, and the enhancement mechanism is based on an exciton energy migration upon excitation along the hydrogen-bond backbone. The presence of intermolecular hydrogen bonding in the acids in solution was established by solvent-dependent fluorescence studies and dynamic light scattering (DLS) experiments. In addition, the importance of intermolecular hydrogen bonds in solid-state sensing was further explored by scanning tunnelling microscopy (STM) experiments at the liquid-solid interface, in which structures of self-assembled monolayer of the acids and the corresponding esters were compared. The sensitivity tests revealed that these supramolecular sensors can even detect picric acid and trinitrotoluene in solution at levels as low as parts per trillion (ppt), which is much below the recommended permissible level of these constituents in drinking water.
Resumo:
The clever designs of natural transducers are a great source of inspiration for man-made systems. At small length scales, there are many transducers in nature that we are now beginning to understand and learn from. Here, we present an example of such a transducer that is used by field crickets to produce their characteristic song. This transducer uses two distinct components-a file of discrete teeth and a plectrum that engages intermittently to produce a series of impulses forming the loading, and an approximately triangular membrane, called the harp, that acts as a resonator and vibrates in response to the impulse-train loading. The file-and-plectrum act as a frequency multiplier taking the low wing beat frequency as the input and converting it into an impulse-train of sufficiently high frequency close to the resonant frequency of the harp. The forced vibration response results in beats producing the characteristic sound of the cricket song. With careful measurements of the harp geometry and experimental measurements of its mechanical properties (Young's modulus determined from nanoindentation tests), we construct a finite element (FE) model of the harp and carry out modal analysis to determine its natural frequency. We fine tune the model with appropriate elastic boundary conditions to match the natural frequency of the harp of a particular species-Gryllus bimaculatus. We model impulsive loading based on a loading scheme reported in literature and predict the transient response of the harp. We show that the harp indeed produces beats and its frequency content matches closely that of the recorded song. Subsequently, we use our FE model to show that the natural design is quite robust to perturbations in the file. The characteristic song frequency produced is unaffected by variations in the spacing of file-teeth and even by larger gaps. Based on the understanding of how this natural transducer works, one can design and fabricate efficient microscale acoustic devices such as microelectromechanical systems (MEMS) loudspeakers.
Resumo:
With the increasing availability of wearable cameras, research on first-person view videos (egocentric videos) has received much attention recently. While some effort has been devoted to collecting various egocentric video datasets, there has not been a focused effort in assembling one that could capture the diversity and complexity of activities related to life-logging, which is expected to be an important application for egocentric videos. In this work, we first conduct a comprehensive survey of existing egocentric video datasets. We observe that existing datasets do not emphasize activities relevant to the life-logging scenario. We build an egocentric video dataset dubbed LENA (Life-logging EgoceNtric Activities) (http://people.sutd.edu.sg/similar to 1000892/dataset) which includes egocentric videos of 13 fine-grained activity categories, recorded under diverse situations and environments using the Google Glass. Activities in LENA can also be grouped into 5 top-level categories to meet various needs and multiple demands for activities analysis research. We evaluate state-of-the-art activity recognition using LENA in detail and also analyze the performance of popular descriptors in egocentric activity recognition.
Resumo:
The Southern Granulite Terrain in India is a collage of crustal blocks ranging in age from Archean to Neoproterozoic. This study investigate the tectonic evolution of one of the northernmost block- the Biligiri Block (BRB) through a multidisciplinary approach involving field investigation, petrographic studies, LA-ICPMS zircon U-Pb geochronology, Hf isotopic analyses, metamorphic P-T phase diagram computations, and crustal thickness modeling. The garnet bearing quartzofeldspathic gneiss from the central BRB preserve Mesoarchean magmatic zircons with ages between 3207 and 2806 Ma and positive epsilon Hf value (+2.7) which possibly indicates vestiges of a Mesoarchean primitive continental crust. The occurrence of quartzite-iron formation intercalation as well as ultramafic lenses along the western boundary of the BRB is interpreted to indicate that the Kollegal structural lineament is a possible paleo-suture. Phase diagram computation of a metagabbro from the southwestern periphery of the Kollegal suture zone reveals high-pressure (similar to 18.5 kbar) and medium-temperature (similar to 840 degrees C) metamorphism, likely during eastward subduction of the Western Dharwar oceanic crust beneath the Mesoarchean BRB. In the model presented here, slab subduction, melting and underplating processes generated arc magmatism and subsequent charnockitization within the BRB between ca. 2650 Ma and ca. 2498 Ma. These results thus reveal Meso- to Neoarchean tectonic evolution of the BRB. The spatial variation of crustal thickness, derived from flexure inversion technique, provides additional constraints on the tectonic linkage of the BRB with its surrounding terrains. In conjunction with published data, the Moyar and the Kollegal suture zones are considered to mark the trace of ocean closure along which the Nilgiri and Biligiri Rangan Blocks accreted on to the Western Dharwar Craton. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
The Load/Unload Response Ratio (LURR) method is proposed for short-to-intermediate-term earthquake prediction [Yin, X.C., Chen, X.Z., Song, Z.P., Yin, C., 1995. A New Approach to Earthquake Prediction — The Load/Unload Response Ratio (LURR) Theory, Pure Appl. Geophys., 145, 701–715]. This method is based on measuring the ratio between Benioff strains released during the time periods of loading and unloading, corresponding to the Coulomb Failure Stress change induced by Earth tides on optimally oriented faults. According to the method, the LURR time series usually climb to an anomalously high peak prior to occurrence of a large earthquake. Previous studies have indicated that the size of critical seismogenic region selected for LURR measurements has great influence on the evaluation of LURR. In this study, we replace the circular region usually adopted in LURR practice with an area within which the tectonic stress change would mostly affect the Coulomb stress on a potential seismogenic fault of a future event. The Coulomb stress change before a hypothetical earthquake is calculated based on a simple back-slip dislocation model of the event. This new algorithm, by combining the LURR method with our choice of identified area with increased Coulomb stress, is devised to improve the sensitivity of LURR to measure criticality of stress accumulation before a large earthquake. Retrospective tests of this algorithm on four large earthquakes occurred in California over the last two decades show remarkable enhancement of the LURR precursory anomalies. For some strong events of lesser magnitudes occurred in the same neighborhoods and during the same time periods, significant anomalies are found if circular areas are used, and are not found if increased Coulomb stress areas are used for LURR data selection. The unique feature of this algorithm may provide stronger constraints on forecasts of the size and location of future large events.
Resumo:
To accomplish laser-induced thermal loading simulation tests for pistons,the Gaussian beam was modulated into multi-circular beam with specific intensity distribution.A reverse method was proposed to design the intensity distribution for the laser-induced thermal loading based on finite element(FE) analysis.Firstly,the FE model is improved by alternating parameters of boundary conditions and thermal-physical properties of piston material in a reasonable range,therefore it can simulate the experimental resul...
Resumo:
Experimental investigations on the ignition and combustion stabilization of kerosene with pilot hydrogen in Mach 2.5 airflows were conducted using two test combustors, with cross sections of 30.5 x 30 and 51 x 70 mm, respectively. Various integrated modules, including the combinations of different pilot injection schemes and recessed cavity flameholders with different geometries, were designed and tested. The stagnation pressure of vitiated air varied within the range of 1.1-1.8 NiPa, while the stagnation temperature varied from 1500 to 1900 K. Specifically, effects of the pilot hydrogen injection scheme, cavity geometry, and combustor scaling on the minimally required pilot hydrogen equivalence ratio were systematically examined. Results indicated that the cavity depth and length had significant effects on the ignition and flameholding, whereas the slanted angle of the aft wall was relatively less important. Two cavities in tandem were shown to be a more effective flameholding mechanism than that with a single cavity. The minimally required pilot hydrogen equivalence ratio for kerosene ignition and stable combustion was found to be as low as 0.02. Furthermore, combustion efficiency of 80% was demonstrated to be achievable for kerosene with the simultaneous use of pilot hydrogen and a recessed cavity to promote the ignition and global burning.