965 resultados para Lagrangian bounds
Resumo:
Unlike zero-sum stochastic games, a difficult problem in general-sum stochastic games is to obtain verifiable conditions for Nash equilibria. We show in this paper that by splitting an associated non-linear optimization problem into several sub-problems, characterization of Nash equilibria in a general-sum discounted stochastic games is possible. Using the aforementioned sub-problems, we in fact derive a set of necessary and sufficient verifiable conditions (termed KKT-SP conditions) for a strategy-pair to result in Nash equilibrium. Also, we show that any algorithm which tracks the zero of the gradient of the Lagrangian of every sub-problem provides a Nash strategy-pair. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The K pi form factors are investigated at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using as input the values of the form factors at t = 0, and at the Callan-Treiman point in the scalar case, stringent constraints are obtained on the slope and curvature parameters of the Taylor expansion at the origin.
Resumo:
Two models for AF relaying, namely, fixed gain and fixed power relaying, have been extensively studied in the literature given their ability to harness spatial diversity. In fixed gain relaying, the relay gain is fixed but its transmit power varies as a function of the source-relay channel gain. In fixed power relaying, the relay transmit power is fixed, but its gain varies. We revisit and generalize the fundamental two-hop AF relaying model. We present an optimal scheme in which an average power constrained AF relay adapts its gain and transmit power to minimize the symbol error probability (SEP) at the destination. Also derived are insightful and practically amenable closed-form bounds for the optimal relay gain. We then analyze the SEP of MPSK, derive tight bounds for it, and characterize the diversity order for Rayleigh fading. Also derived is an SEP approximation that is accurate to within 0.1 dB. Extensive results show that the scheme yields significant energy savings of 2.0-7.7 dB at the source and relay. Optimal relay placement for the proposed scheme is also characterized, and is different from fixed gain or power relaying. Generalizations to MQAM and other fading distributions are also discussed.
Resumo:
We characterise higher order Riesz transforms on the Heisenberg group and also show that they satisfy dimension-free bounds under some assumptions on the multipliers. Using transference theorems, we deduce boundedness theorems for Riesz transforms on the reduced Heisenberg group and hence also for the Riesz transforms associated to multiple Hermite and Laguerre expansions.
Resumo:
A unit cube in (or a k-cube in short) is defined as the Cartesian product R (1) x R (2) x ... x R (k) where R (i) (for 1 a parts per thousand currency sign i a parts per thousand currency sign k) is a closed interval of the form a (i) , a (i) + 1] on the real line. A k-cube representation of a graph G is a mapping of the vertices of G to k-cubes such that two vertices in G are adjacent if and only if their corresponding k-cubes have a non-empty intersection. The cubicity of G is the minimum k such that G has a k-cube representation. From a geometric embedding point of view, a k-cube representation of G = (V, E) yields an embedding such that for any two vertices u and v, ||f(u) - f(v)||(a) a parts per thousand currency sign 1 if and only if . We first present a randomized algorithm that constructs the cube representation of any graph on n vertices with maximum degree Delta in O(Delta ln n) dimensions. This algorithm is then derandomized to obtain a polynomial time deterministic algorithm that also produces the cube representation of the input graph in the same number of dimensions. The bandwidth ordering of the graph is studied next and it is shown that our algorithm can be improved to produce a cube representation of the input graph G in O(Delta ln b) dimensions, where b is the bandwidth of G, given a bandwidth ordering of G. Note that b a parts per thousand currency sign n and b is much smaller than n for many well-known graph classes. Another upper bound of b + 1 on the cubicity of any graph with bandwidth b is also shown. Together, these results imply that for any graph G with maximum degree Delta and bandwidth b, the cubicity is O(min{b, Delta ln b}). The upper bound of b + 1 is used to derive upper bounds for the cubicity of circular-arc graphs, cocomparability graphs and AT-free graphs in terms of the maximum degree Delta.
Resumo:
We introduce the defect sequence for a contractive tuple of Hilbert space operators and investigate its properties. The defect sequence is a sequence of numbers, called defect dimensions associated with a contractive tuple. We show that there are upper bounds for the defect dimensions. The tuples for which these upper bounds are obtained, are called maximal contractive tuples. The upper bounds are different in the non-commutative and in the commutative case. We show that the creation operators on the full Fock space and the coordinate multipliers on the Drury-Arveson space are maximal. We also study pure tuples and see how the defect dimensions play a role in their irreducibility. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Motivated by applications to distributed storage, Gopalan et al recently introduced the interesting notion of information-symbol locality in a linear code. By this it is meant that each message symbol appears in a parity-check equation associated with small Hamming weight, thereby enabling recovery of the message symbol by examining a small number of other code symbols. This notion is expanded to the case when all code symbols, not just the message symbols, are covered by such ``local'' parity. In this paper, we extend the results of Gopalan et. al. so as to permit recovery of an erased code symbol even in the presence of errors in local parity symbols. We present tight bounds on the minimum distance of such codes and exhibit codes that are optimal with respect to the local error-correction property. As a corollary, we obtain an upper bound on the minimum distance of a concatenated code.
Resumo:
Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network (WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that can be tuned so as to tradeoff the end-to-end delay against a total cost, such as the hop count or total energy. Our approach is to solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower bound constraint on a suitable reward offered by the next-hop relay; the constraint serves to tune the tradeoff. The reward metric used for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use the progress toward sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays, their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant, when a relay reveals its reward value, the forwarding node's problem is to forward the packet or to wait for further relays to wake-up. In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e., average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that obtained by the globally optimal forwarding algorithm proposed by Kim et al. 1].
Resumo:
We study the tradeoff between the average error probability and the average queueing delay of messages which randomly arrive to the transmitter of a point-to-point discrete memoryless channel that uses variable rate fixed codeword length random coding. Bounds to the exponential decay rate of the average error probability with average queueing delay in the regime of large average delay are obtained. Upper and lower bounds to the optimal average delay for a given average error probability constraint are presented. We then formulate a constrained Markov decision problem for characterizing the rate of transmission as a function of queue size given an average error probability constraint. Using a Lagrange multiplier the constrained Markov decision problem is then converted to a problem of minimizing the average cost for a Markov decision problem. A simple heuristic policy is proposed which approximately achieves the optimal average cost.
Resumo:
This work derives inner and outer bounds on the generalized degrees of freedom (GDOF) of the K-user symmetric MIMO Gaussian interference channel. For the inner bound, an achievable GDOF is derived by employing a combination of treating interference as noise, zero-forcing at the receivers, interference alignment (IA), and extending the Han-Kobayashi (HK) scheme to K users, depending on the number of antennas and the INR/SNR level. An outer bound on the GDOF is derived, using a combination of the notion of cooperation and providing side information to the receivers. Several interesting conclusions are drawn from the bounds. For example, in terms of the achievable GDOF in the weak interference regime, when the number of transmit antennas (M) is equal to the number of receive antennas (N), treating interference as noise performs the same as the HK scheme and is GDOF optimal. For K >; N/M+1, a combination of the HK and IA schemes performs the best among the schemes considered. However, for N/M <; K ≤ N/M+1, the HK scheme is found to be GDOF optimal.
Resumo:
Effects of dynamic contact angle models on the flow dynamics of an impinging droplet in sharp interface simulations are presented in this article. In the considered finite element scheme, the free surface is tracked using the arbitrary Lagrangian-Eulerian approach. The contact angle is incorporated into the model by replacing the curvature with the Laplace-Beltrami operator and integration by parts. Further, the Navier-slip with friction boundary condition is used to avoid stress singularities at the contact line. Our study demonstrates that the contact angle models have almost no influence on the flow dynamics of the non-wetting droplets. In computations of the wetting and partially wetting droplets, different contact angle models induce different flow dynamics, especially during recoiling. It is shown that a large value for the slip number has to be used in computations of the wetting and partially wetting droplets in order to reduce the effects of the contact angle models. Among all models, the equilibrium model is simple and easy to implement. Further, the equilibrium model also incorporates the contact angle hysteresis. Thus, the equilibrium contact angle model is preferred in sharp interface numerical schemes.
Resumo:
Parabolized stability equation (PSE) models are being deve loped to predict the evolu-tion of low-frequency, large-scale wavepacket structures and their radiated sound in high-speed turbulent round jets. Linear PSE wavepacket models were previously shown to be in reasonably good agreement with the amplitude envelope and phase measured using a microphone array placed just outside the jet shear layer. 1,2 Here we show they also in very good agreement with hot-wire measurements at the jet center line in the potential core,for a different set of experiments. 3 When used as a model source for acoustic analogy, the predicted far field noise radiation is in reasonably good agreement with microphone measurements for aft angles where contributions from large -scale structures dominate the acoustic field. Nonlinear PSE is then employed in order to determine the relative impor-tance of the mode interactions on the wavepackets. A series of nonlinear computations with randomized initial conditions are use in order to obtain bounds for the evolution of the modes in the natural turbulent jet flow. It was found that n onlinearity has a very limited impact on the evolution of the wavepackets for St≥0. 3. Finally, the nonlinear mechanism for the generation of a low-frequency mode as the difference-frequency mode 4,5 of two forced frequencies is investigated in the scope of the high Reynolds number jets considered in this paper.
Resumo:
The component and system reliability based design of bridge abutments under earthquake loading is presented in the paper. Planar failure surface has been used in conjunction with pseudo-dynamic approach to compute seismic active earth pressures on an abutment. The pseudo-dynamic method, considers the effect of phase difference in shear waves, soil amplification along with the horizontal seismic accelerations, strain localization in backfill soil and associated post-peak reduction in the shear resistance from peak to residual values along a previously formed failure plane. Four modes of stability viz. sliding, overturning, eccentricity and bearing capacity of the foundation soil are considered in the analysis. The series system reliability is computed with an assumption of independent failure modes. The lower and upper bounds of system reliability are also computed by taking into account the correlations between four failure modes, which is evaluated using the direction cosines of the tangent planes at the most probable points of failure.
Resumo:
A low thermal diffusivity of adsorption beds induces a large thermal gradient across cylindrical adsorbers used in adsorption cooling cycles. This reduces the concentration difference across which a thermal compressor operates. Slow adsorption kinetics in conjunction with the void volume effect further diminishes throughputs from those adsorption thermal compressors. The problem can be partially alleviated by increasing the desorption temperatures. The theme of this paper is the determination the minimum desorption temperature required for a given set of evaporating/condensing temperatures for an activated carbon + HFC 134a adsorption cooler. The calculation scheme is validated from experimental data. Results from a parametric analysis covering a range of evaporating/condensing/desorption temperatures are presented. It is found that the overall uptake efficiency and Carnot COP characterize these bounds. A design methodology for adsorber sizing is evolved. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A decode and forward protocol based Trellis Coded Modulation (TCM) scheme for the half-duplex relay channel, in a Rayleigh fading environment, is presented. The proposed scheme can achieve any spectral efficiency greater than or equal to one bit per channel use (bpcu). A near-ML decoder for the suggested TCM scheme is proposed. It is shown that the high Signal to Noise Ratio (SNR) performance of this near-ML decoder approaches the performance of the optimal ML decoder. Based on the derived Pair-wise Error Probability (PEP) bounds, design criteria to maximize the diversity and coding gains are obtained. Simulation results show a large gain in SNR for the proposed TCM scheme over uncoded communication as well as the direct transmission without the relay.