980 resultados para JAX-WS
Resumo:
On the base of detailed studies in the Keret' and Kem' estuaries (Karelian coast of the White Sea) in 2000-2003 a comparative analysis has been carried out. It includes: salinity and freshening of the water column, variations of suspended matter concentration and its chemical composition, current velocity and zooplankton species composition during flood- and ebb tides.
Resumo:
A study was performed from August 11 to September 3, 1998 in the Pechora Sea, which covered the shallow-water southeastern Barents Sea. Chlorophyll a concentration in the surface layer (C_chls) ranged from 0.08 to 1.15 mg/m**3, while primary production in the water column (C_phs) Varied from 17 to 170 mg C/m**2/day, aver. 75 mg C/m**2/day. Transition from central deep-water (60-190 m) parts of the sea to coastal shallow-water (15-30 m) parts was accompanied by increase of average C_chls values 2.4 times (from 0.21 to 0.51 mg/m**3) and decrease in average C_phs 1.6 times (from 95 to 58 mg C/m**2/day); the latter, in turn, resulted from decrease in thickness of the photosynthetic layer (H_ph) from 55 to 12 m and its relative transparency (H) from 17 to 4 m. This sharp change in H value and absence of a positive feedback between C_chls and C_phs were most probably related to rapid increase in the role of yellow substance and suspended matter in absorption of solar radiation in coastal waters. In sea areas with depths greater than 30 m a deep chlorophyll maximum was observed; at most of stations it located in the 20-35 m deep layer during illumination in photosynthetic active radiation range comprising 0.8-1.5% of its surface value. Parameters of photosynthetic light curves in these regions indicate participation of shade-adapted flora in formation of the deep chlorophyll maximum. In coastal waters characterized by a relatively uniform chlorophyll distribution over the water column no light adaptation of phytoplankton to efficient utilization of low irradiation for photosynthesis was encountered. Thus, a conclusion was made that combination of extremely low values of C_phs and H_ph makes the pelagic ecosystem of the Pechora Sea coastal regions very sensitive to anthropogenic impacts that may increase water turbidity.
Resumo:
Concentrations of adenosine triphosphate (ATP), urea, and dissolved organic carbon in bottom water are shown to be considerable, sometimes several times higher than in the photic and surface layers of the ocean. Urea and ATP concentrations are inversely proportional. Identified biochemical characteristics of bottom water are of great importance in determining the status of the aquatic environment. The highest life activity (maximum ATP content) in bottom water appeared in the vicinity of faults in rift zones of the ocean, where high gas concentrations were also found. Population of chemoautotrophic microorganisms was clearly present under these conditions. Biochemical investigations provide additional criteria for identifying oil and gas prospects. They are also of definite interest in combination with gasometric determinations, which will undoubtedly give us deeper understanding of processes of formation of oil and gas and will help in finding them.
Resumo:
Studies were carried out in the northeastern Sea of Okhotsk, in the zone of interaction of the West Kamchatka and Compensating Currents at the beginning of spring seasonal succession from March 23 to April 14,1998. Samples for analysis of pigmentary and species compositions of phytoplankton were taken from the sea surface layer, depth 0.5 m. To reduce influence of micropatchiness on phytoplankon distribution at each station subsamples 0.7-1 l were collected every 50-100 m. These subsamples were used to make integral samples 4.5-8.0 l. Phytoplankton biomass and concentration of chlorophyll a varied from 18.7 to 490.9 mg/m**3 and from 0.129 to 2.422 mg/m**3, respectively. Total concentration of phytoplankton pigments varied from 0.622 to 6.679 mg/m**3. In samples studied 51 species of microalgae from 5 orders were found. In terms of the number of species, Bacillariophyta (31 species) and Dinophyta (15 species) prevailed. Diatomaceous algae make up more than 80% of the total phytoplankton biomass in waters of the Compensating Current, from 50 to 80% in intermediate waters, and less than 50% in waters of the West Kamchatka Current. Phytoplankton populations consisting primarily of diatoms were characterized by very low chlorophyll a to biomass ratio (0.1 %). It is three times lower than the ratio observed in phytoplankton populations that were close by species composition and size composition in this area in the late April-early May 1996.