977 resultados para Irradiation embrittlement
Resumo:
The present study investigated the potential use of topical formulations containing marigold extract (ME) (Calendula officinalis extract) against ultraviolet (UV) B irradiation-induced skin damage. The physical and functional stabilities, as well as the skin penetration capacity, of the different topical formulations developed were evaluated. In addition, the in vivo capacity to prevent/treat the UVB irradiation-induced skin damage, in hairless mice, of the formulation with better skin penetration capacity was investigated. All of the formulations were physically and functionally stable. The gel formulation [Formulation 3 (F3)] was the most effective for the topical delivery of ME, which was detected as 0.21 mu g/cm(2) of narcissin and as 0.07 mu g/cm(2) of the rutin in the viable epidermis. This formulation was able to maintain glutathione reduced levels close to those of nonirradiated animals, but did not affect the gelatinase-9 and myeloperoxidase activities increased by exposure to UVB irradiation. In addition, F3 reduced the histological skin changes induced by UVB irradiation that appear as modifications of collagen fibrils. Therefore, the photoprotective effect in hairless mice achieved with the topical application of ME in gel formulation is most likely associated with a possible improvement in the collagen synthesis in the subepidermal connective tissue. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:2182-2193, 2011
Resumo:
The ultimate check of the actual dose delivered to a patient in radiotherapy can only be achieved by using in vivo dosimetry. This work reports a pilot study to test the applicability of a thermoluminescent dosimetric system for performing in vivo entrance dose measurements in external photon beam radiotherapy. The measurements demonstrated the value of thermoluminescent dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in radiotherapy. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this in vitro study was to evaluate the effect of etching time on the tensile bond strength (TBS) of a conventional adhesive bonded to dentin previously irradiated with erbium:yttrium-aluminum-garnet (Er:YAG) and erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers. Buccal and lingual surfaces of 45 third molars were flattened until the dentin was exposed and randomly assigned to three groups (n = 30) according to the dentin treatment: control (not irradiated), irradiated with Er:YAG (1 W; 250 mJ; 4 Hz; 80.6 J/cm(2)) laser or Er,Cr:YSGG (4 W; 200 mJ; 20 Hz; 71.4 J/cm(2)) laser, and into three subgroups (n = 10) according to acid etching time (15 s, 30 s or 60 s) for each experimental group. After acid etching, the adhesive was applied, followed by the construction of an inverted cone of composite resin. The samples were immersed in distilled water (37A degrees C for 24 h) and subjected to TBS test [50 kilogram-force (kgf), 0.5 mm/min]. Data were analyzed by analysis of variance (ANOVA) and Tukey statistical tests (P a parts per thousand currency signaEuro parts per thousand 0.05). Control group samples presented significant higher TBS values than those of all lased groups. Both irradiated groups exhibited similar TBS values. Samples subjected to the different etching times in each experimental group presented similar TBS. Based on the conditions of this in vitro study we concluded that Er:YAG and Er,Cr:YSGG laser irradiation of the dentin weakens the bond strength of the adhesive. Moreover, increased etching time is not able to modify the bonding strength of the adhesive to irradiated dentin.
Resumo:
The objective of this study was to evaluate the influence of various pulse widths with different energy parameters of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mu m) on the morphology and microleakage of cavities restored with composite resin. Identically sized class V cavities were prepared on the buccal surfaces of 54 bovine teeth by high-speed drill (n = 6, control, group 1) and prepared by Er:YAG laser (Fidelis 320A, Fotona, Slovenia) with irradiation parameters of 350 mJ/ 4 Hz or 400 mJ/2 Hz and pulse width: group 2, very short pulse (VSP); group 3, short pulse (SP); group 4, long pulse (LP); group 5, very long pulse (VLP). All cavities were filled with composite resin (Z-250-3 M), stored at 37A degrees C in distilled water, polished after 24 h, and thermally stressed (700 cycles/5-55A degrees C). The teeth were impermeabilized, immersed in 50% silver nitrate solution for 8 h, sectioned longitudinally, and exposed to Photoflood light for 10 min to reveal the stain. The leakage was evaluated under stereomicroscope by three different examiners, in a double-blind fashion, and scored (0-3). The results were analyzed by Kruskal-Wallis test (P > 0.05) and showed that there was no significant differences between the groups tested. Under scanning electron microscopy (SEM) the morphology of the cavities prepared by laser showed irregular enamel margins and dentin internal walls, and a more conservative pattern than that of conventional cavities. The different power settings and pulse widths of Er:YAG laser in cavity preparation had no influence on microleakage of composite resin restorations.
Resumo:
Background and Objectives: This study evaluated the hybrid layer (HL) morphology created by three adhesive systems (AS) on dentin surfaces treated with Er:YAG laser using two irradiation parameters. Study Design: Occlusal flat dentin surfaces of 36 human third molars were assigned into nine groups (n = 4) according to the following ASs: one bottle etch&rinse Single Bond Plus (3M ESPE), two-step Clearfil Protect Bond (Kuraray), and all-in-one S3 Bond (Kuraray) self-etching, which were labeled with rhodamine B or fluorescein isothiocyanate dextran and were applied to dentin surfaces that were irradiated with Er:YAG laser at either 120 (38.7 J/cm(2)) or 200 mJ/pulse (64.5 J/cm(2)), or were applied to untreated dentin surfaces (control group). The ASs were light-activated following MI and the bonded surfaces were restored with resin composite Z250 (3M ESPE). After 24 hours of storage in vegetable oil, the restored teeth were vertically, serially sectioned into 1-mm thick slabs, which had the adhesive interfaces analyzed with confocal laser microscope (CLSM-LSM 510 Meta). CLSM images were recorded in the fluorescent mode from three different regions along each bonded interface. Results: Non-uniform HL was created on laser-irradiated dentin surfaces regardless of laser irradiation protocol for all AS, while regular and uniform HL was observed in the control groups. ""Stretch mark""-like red lines were found within the HL as a result of resin infiltration into dentin microfissures, which were predominantly observed in 200 mJ/pulse groups regardless of AS. Poor resin infiltration into peritubular dentin was observed in most regions of adhesive interfaces created by all ASs on laser-irradiated dentin, resulting in thin resin tags with neither funnel-shaped morphology nor lateral resin projections. Conclusion: Laser irradiation of dentin surfaces at 120 or 200 mJ/pulse resulted in morphological changes in HL and resin tags for all ASs evaluated in the study. Lasers Surg. Med. 42:662-670, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Zirconia (ZrO(2)) is a bioinert, strong, and tough ceramic, while titania (TiO(2)) is bioactive but has poor mechanical properties. It is expected that ZrO(2)-TiO(2) mixed ceramics incorporate the individual properties of both ceramics, so that this material would exhibit better biological properties. Thus, the objective of this study was to compare the biocompatibility properties of ZrO(2)-TiO(2) mixed ceramics. Sintered ceramics pellets, obtained from powders of TiO(2), ZrO(2), and three different ZrO(2)-TiO(2) mixed oxides were used. Roughnesses, X-ray diffraction, microstructure through SEM, hardness, and DRIFT characterizations were performed. For biocompatibility analysis cultured FMM1 fibroblasts were plated on the top of disks and counted in SEM micrographs 1 and 2 days later. Data were compared by ANOVA complemented by Tukey`s test. All samples presented high densities and similar microstructure. The H(2)O content in the mixed ceramics was more evident than in pure ceramics. The number of fibroblasts attached to the disks increased significantly independently of the experimental group. The cell growth on the top of the ZrO(2)-TiO(2) samples was similar and significantly higher than those of TiO(2) and ZrO(2) samples. Our in vitro experiments showed that the ZrO(2)-TiO(2) sintered ceramics are biocompatible allowing faster cell growth than pure oxides ceramics. The improvement of hardness is proportional to the ZrO(2) content. Thus, the ZrO(2)-TiO(2) sintered ceramics could be considered as potential implant material. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 94B: 305-311, 2010.
Resumo:
Introduction: The aim of this study was to evaluate pulp oxygenation levels (%SpO(2)) in patients with malignant intraoral and oropharyngeal tumors treated by radiotherapy (RT). Methods: Pulp oxygenation levels were measured by pulse oximetry. Twenty patients were selected, and two teeth of each participant (n = 40) were analyzed, regardless of the quadrant and the area irradiated, at four different time points: TP1, before RI; TP2, at the beginning of RI with radiation doses between 30 and 35 Gy; TP3, at the end of RI with radiation dose! between 60 and 70 Gy; and TP4, 4 to 5 months after the beginning of cancer treatment. Results: Mean %SpO(2) at the different time points were 93% (TP1), 83% (TP2), 77% (TP3), and 85% (TP4). The Student`s t test showed statistically significant differences between TP1 and TP2 (P < .01), TP3 (P <.01), and TP4 (P <.01). TP3 was also statistically significantly different when compared with TP2 (P <.01) and TP4 (P <.01). No statistically significant difference could be observed between TP2 and TP4. Conclusion`s: Because the mean %SpO(2) before RI was greater than during and after therapy and values obtained 4 to 5 months after the beginning of RI were close to the initiation of RI, pulp tissue may be able to regain normal blood flow after RT. If the changes in the microcirculation of the dental pulp were indeed transitory, preventive endodontic treatment or extraction in patients who are currently undergoing or recently received RI and who show negative signs of pulp sensitivity may rot be necessary for pulpal reasons. (J Endod 2011;37:1197-1200)
Resumo:
The aim of this in vitro study was to evaluate some parameters of dental etching when irradiated with an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser. One-hundred sound human third molars were selected and randomly distributed into ten groups (n = 10). The class V cavities of group 1 (control) were prepared with a bur and etched with 37% phosphoric acid, while groups G2 to G10, were prepared with laser (5 W, 88.46 J/cm(2), 90/70% air/water) and etched with the following powers: G3 and G4, 0.25 W; G5 and G6, 0.5 W; G7 and G8, 0.75 W; G9 and G10, 1 W. Group G2 received no laser etching. Prior to restoration, G2, G4, G6, G8 and G10 received acid etching. After restoration, all samples were submitted to a microleakage test. According to statistical analysis (Kruskal-Wallis and Dunn`s tests), G10 presented the lowest microleakage values (P < 0.05). The other groups showed no differences between them. Etching with Er,Cr:YSGG laser (1 W) followed by phosphoric acid was effective in reducing the microleakage of class V restorations.
Resumo:
The aim of this study was to evaluate the influence of erbium:yttrium-aluminum-garnet (Er:YAG) laser compared with traditional treatment on dentin permeability to calcitonin and sodium alendronate. Forty bovine roots were sectioned and divided into eight groups. Groups 1 and 2 (G1/G2) were immersed in saline solution; G1T/G2T were immersed in ethylene diamine tetra-acetic acid plus sodium lauryl ether sulfate (EDTA-T) and sodium hypochlorite (NaOCl); G1I/G2I were irradiated with Er:YAG laser (2.94 mu m, 6 Hz, 40.4 J/cm(2)); G1TI/G2TI were immersed in EDTA-T, NaOCl and subjected to Er:YAG irradiation. After 4 h the radioactivity of the saline solution was measured. Statistical analysis revealed a significant difference (P < 0.05) when the groups treated with EDTA-T and NaOCl followed by Er:YAG laser irradiation were compared with the groups treated with EDTA-T only and with the groups that received no treatment. Er:YAG laser associated with traditional procedures significantly increased the diffusion of calcitonin and sodium alendronate through dentin. All groups showed calcitonin and sodium alendronate diffusion.
Resumo:
Alternative treatment for recurrent labial infection by herpes simplex virus (HSV) have been considered. The aim of this study was to evaluate the effectiveness of laser phototherapy in prevention and reduction of severity of labial manifestations of herpes labialis virus. Seventy-one patients, divided into experimental (n = 41) and control (n = 30) groups were followed up for 16 months. Patients in the control group were treated topically with aciclovir and patients in the experimental group were subjected to laser phototherapy (one session per week, 10 weeks): 780 nm, 60 mW, 3.0 J/cm(2) or 4.5 J/cm(2) on healthy (no HSV-1 infection) and affected (with HSV-1 infection) tissues. Patients in the experimental group presented a significant decrease in dimension of herpes labialis lesions (P = 0.013) and inflammatory edema (P = 0.031). The reduction in pain level (P = 0.051) and monthly recurrences (P = 0.076) did not reach statistical significance. This study represents an in vivo indication that this treatment should be further considered as an effective alternative to therapeutic regimens for herpes labialis lesions.
Resumo:
Purpose: To assess the effects of three different dental adhesive systems on the formation of secondary root caries, in vitro, with a standardized interfacial gap in a filled cavity model. Methods: 40 sound human molars were selected and randomly assigned to four experimental groups: Clearfil SE Bond (CSEB), Xeno III (X-III), Scotchbond Multi-Purpose Plus (SBMP) and negative control (NC) without an adhesive system. After the standardized Class V cavity preparations on the buccal and lingual surfaces, restorations were placed with resin composite (Filtek Z250) using a standardized interfacial gap, using a 3 x 2 mm piece of 50 mu m metal matrix. The teeth were sterilized with gamma irradiation and exposed to a cariogenic challenge using a bacterial system with Streptococcus mutans. Depth and extension of wall lesions formed and the depth of outer lesions were measured by software coupled with light microscopy. Results: For wall lesion extension the ANOVA test showed differences between groups except between X-HI and SBMP (P= 0.294). The Tukey`s test of confidence intervals indicated smaller values for the CSEB group than for the others. For wall lesion depth the CSEB group also presented the smallest mean values of wall lesion depth when compared to the others (P< 0.0001) for all comparisons using Tukey`s test. Regarding outer lesion depth, all adhesives showed statistically similar behavior. SEM evaluation of the morphologic appearance of caries lesions confirmed the statistical results showing small caries lesion development for cavities restored with CSEB adhesive system, which may suggest that this adhesive system interdiffusion zone promoted a good interaction with subjacent dentin protecting the dental tissues from recurrent caries. (Am J Dent 2010;23:93-97).
Resumo:
This study evaluated the effect of different parameters of erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation on enamel mineral loss in a simulated caries model. Forty-five enamel samples obtained from third molar teeth (3 mmx 3 mm) were randomly divided into five groups (n = 9): G1-Er,Cr:YSGG laser at 0.25 W, 20 Hz, 2.8 J/cm(2); G2-Er,Cr:YSGG laser at 0.50 W, 20 Hz, 5.7 J/cm(2); G3-Er,Cr:YSGG laser at 0.75 W, 20 Hz, 8.5 J/cm(2); G4-sodium fluoride (NaF) dentifrice (positive control); G5-no treatment (negative control). After irradiation, the samples were submitted to 2 weeks of pH cycling. After the acid challenge, the samples were assessed by cross-sectional microhardness at different depths from the enamel surface. Analysis of variance (ANOVA) and Student-Newman-Keuls tests were performed (alpha = 5%). The percentage of lesion inhibition for each group was: G1 37%; G2 38%; G3 64%, and G4 50.5%. Regarding the relative mineral loss values (micrometers x volume percent), groups G1 (1,392 +/- 522) and G2 (1,292 +/- 657) did not differ significantly from each other, but both had higher values than group G3 (753 +/- 287); the groups irradiated with Er,Cr:YSGG laser did not differ from group G4. Although the findings of the study revealed that Er,Cr:YSGG laser irradiation at 8.5 J/cm(2) can be an alternative for the enhancement of the enamel`s resistance to acid, lower energy densities also produced a cariostatic potential comparable to the use of fluoride dentifrice.
Resumo:
Although the cariostatic effects of CO(2) laser on enamel have been shown, its effects on root surface demineralization remains uncertain. The objectives of this in vitro research was to establish safe parameters for a pulsed 10.6 mu m CO(2) laser and to evaluate its effect on morphological features of the root surface, as well as on the reduction of root demineralization. Ninety-five human root surfaces were randomly divided into five groups: G1-No treatment (control); G2-2.5 J/cm(2); G3-4.0 J/cm(2); G4-5.0 J/cm(2); and G5-6.0 J/cm(2). Intrapulpal temperature was evaluated during root surface irradiation by a thermocouple and morphological changes were evaluated by SEM. After the surface treatment, the specimens were submitted to a 7-day pH-cycling model. Subsequently, the cross-sectional Knoop microhardness values were measured. For all irradiated groups, intrapulpal temperature changes were less than 1.5 degrees C. Scanning electron microscopy images indicated that fluences as low as 4.0 J/cm(2) were sufficient to induce morphological changes in the root surface. Additionally, for fluences reaching or exceeding 4.0 J/cm(2), laser-induced inhibitory effects on root surface demineralization were observed. It was concluded that laser energy density in the range of 4.0 to 6.0 J/cm(2) could be applied to a dental root to reduce demineralization of this surface without compromising pulp vitality.
Resumo:
Background: Newly formed biofilm after implant debridement may challenge the long-term stability of peri-implant therapy. This in vitro study aimed to assess the roughness and adherence of Streptococcus sanguinis after treatment of smooth and rough titanium surfaces with an erbium-doped: yttrium, aluminum, and garnet (Er:YAG) laser, metal and plastic curets, and an air-powder abrasive system. Methods: Forty titanium disks with smooth-machined surfaces and 40 with sand-blasted and acid-etched surfaces were divided into the following treatment groups: Er:YAG laser; plastic curet; metal curet, and air-powder abrasive system. The surface roughness (roughness average [Raj) before and after treatments was determined using a profilometer. S. sanguinis (American Type Culture Collection 10556) was grown on treated and untreated specimens, and the amounts of retained bacteria on the surfaces were measured by the culture method. Rough and smooth surfaces with and without a suspension of S. sanguinis were also analyzed using scanning electron microscopy (SEM). Results: For smooth surfaces, the roughest surfaces were produced by metal curets (repeated - measures analysis of variance [ANOVA] and Tukey test; P<0.05). The rough-surface profile was not altered by any of the treatments (repeated-measures ANOVA; P>0.05). Rough surfaces treated with metal curets and air-powder abrasion showed the lowest level of bacteria] adhesion (two-way ANOVA and Tukey test; P<0.05). SEM analysis revealed distinct surface profiles produced by all devices. Conclusions: Metal curets are not recommended for smooth titanium surface debridement due to severe texture alteration. Rough surfaces treated with a metal curet and the air-powder abrasive system were less susceptible to bacterial adhesion, probably due to texture modification and the presence of abrasive deposits. J Periodontol 2009;80: 1824-1832.
Resumo:
The aim of this study was to evaluate the effect of laser irradiation (LI) on enzymatic activities of amylase, catalase and peroxidase in the parotid glands (PG) of diabetic and non-diabetic rats. Ninety-six female rats were divided into eight groups: D0; D5; D10; D20 and C0; C5; C10; C20, respectively. Diabetes was induced by administration of streptozotocin and confirmed later by the glycemia results. Twenty-nine (29) days after the induction, the PGs of groups D5 and C5; D10 and C10; D20 and C20, were irradiated with 5 J/cm(2), 10 J/cm(2) and 20 J/cm(2) of laser diode (660 nm/100 mW) respectively. On the following day, the rats were euthanized and the enzymatic activity in the PGs was measured. Diabetic rats that had not been irradiated (group D0) showed higher catalase activity (P < 0.05) than those in group C0 (0.14 +/- 0.02 U/mg protein and 0.10 +/- 0.03 U/mg protein, respectively). However, laser irradiation of 5 J/cm(2) and 20 J/cm(2) decreased the catalase activity of the diabetic groups (D5 and D20) to non-diabetic values (P > 0.05). Based on the results of this study, LI decreased catalase activity in the PGs of diabetic rats.