932 resultados para Hydrated ethanol fuel
Resumo:
Animal studies and premarketing clinical trials have revealed hepatotoxicity of statins, primarily minor elevations in serum alanine aminotransferase levels. The combined chronic use of medicines and eventual ethanol abuse are common and may present a synergistic action regarding liver injury. Our objective was to study the effect of the chronic use of atorvastatin associated with acute ethanol administration on the liver in a rat model. One group of rats was treated daily for 5 days a week for 2 months with 0.8 mg/kg atorvastatin by gavage. At the end of the treatment the livers were perfused with 72 mM ethanol for 60 min. Control groups (at least 4 animals in each group) consisted of a group of 2-month-old male Wistar EPM-1 rats exposed to 10% ethanol (v/v) ad libitum replacing water for 2 months, followed by perfusion of the liver with 61 nM atorvastatin for 60 min, and a group of animals without chronic ethanol treatment whose livers were perfused with atorvastatin and/or ethanol. The combination of atorvastatin with ethanol did not increase the release of injury marker enzymes (alanine aminotransferase, aspartate aminotransferase, and lactic dehydrogenase) from the liver and no change in liver function markers (bromosulfophthalein clearance, and oxygen consumption) was observed. Our results suggest that the combination of atorvastatin with ethanol is not more hepatotoxic than the separate use of each substance.
Resumo:
The reduction of greenhouse gas emissions in the European Union promotes the combustion of biomass rather than fossil fuels in energy production. Circulating fluidized bed (CFB) combustion offers a simple, flexible and efficient way to utilize untreated biomass in a large scale. CFB furnaces are modeled in order to understand their operation better and to help in the design of new furnaces. Therefore, physically accurate models are needed to describe the heavily coupled multiphase flow, reactions and heat transfer inside the furnace. This thesis presents a new model for the fuel flow inside the CFB furnace, which acknowledges the physical properties of the fuel and the multiphase flow phenomena inside the furnace. This model is applied with special interest in the firing of untreated biomass. An experimental method is utilized to characterize gas-fuel drag force relations. This characteristic drag force approach is developed into a gas-fuel drag force model suitable for irregular, non-spherical biomass particles and applied together with the new fuel flow model in the modeling of a large-scale CFB furnace. The model results are physically valid and achieve very good correspondence with the measurement results from large-scale CFB furnace firing biomass. With the methods and models presented in this work, the fuel flow field inside a circulating fluidized bed furnace can be modeled with better accuracy and more efficiently than in previous studies with a three-dimensional holistic model frame.
Resumo:
Sleep disturbance is among the many consequences of ethanol abuse in both humans and rodents. Ethanol consumption can reduce REM or paradoxical sleep (PS) in humans and rats, respectively. The first aim of this study was to develop an animal model of ethanol-induced PS suppression. This model administered intragastrically (by gavage) to male Wistar rats (3 months old, 200-250 g) 0.5 to 3.5 g/kg ethanol. The 3.5 g/kg dose of ethanol suppressed the PS stage compared with the vehicle group (distilled water) during the first 2-h interval (0-2 h; 1.3 vs 10.2; P < 0.001). The second aim of this study was to investigate the mechanisms by which ethanol suppresses PS. We examined the effects of cholinergic drug pretreatment. The cholinergic system was chosen because of the involvement of cholinergic neurotransmitters in regulating the sleep-wake cycle. A second set of animals was pretreated with 2.5, 5.0, and 10 mg/kg pilocarpine (cholinergic agonist) or atropine (cholinergic antagonist). These drugs were administered 1 h prior to ethanol (3.5 g/kg) or vehicle. Treatment with atropine prior to vehicle or ethanol produced a statistically significant decrease in PS, whereas pilocarpine had no effect on minutes of PS. Although the mechanism by which ethanol induces PS suppression is not fully understood, these data suggest that the cholinergic system is not the only system involved in this interaction.
Resumo:
The objective of this research was to evaluate the interference of ethanol consumption by female rats with cytokines involved in the sepsis process and its correlation with mortality, the main outcome of sepsis. Female Wistar rats in estrus phase were evaluated in three experiments. Experiment 1 (n=40) was performed to determine survival rates. Experiment 2 (n=69) was designed for biochemical analysis, measurement of cytokine and estrogen levels before and after sepsis, and experiment 3 (n=10) was performed to evaluate bacterial growth by colony counts of peritoneal fluid. In all experiments, treated animals were exposed to a 10% ethanol/water solution (v/v) as the single drinking source, while untreated animals were given tap water. After 4 weeks, sepsis was induced in the rats by ip injection of feces. In experiment 1, mortality in ethanol-exposed animals was delayed compared with those that drank water (48 h; P=0.0001). Experiment 2 showed increased tumor necrosis factor alpha (TNF-α) and decreased interleukin-6 (IL-6) and macrophage migration inhibitory factor in septic animals exposed to ethanol compared to septic animals not exposed. Sepsis also increased TNF-α and IL-6 levels in both ethanol- and water-exposed groups. Biochemical analysis showed higher creatinine, alanine aminotransferase and aspartate aminotransferase and decreased glucose levels in septic animals that were exposed to ethanol. In experiment 3, septic animals exposed to ethanol showed decreased numbers of colony-forming units than septic animals exposed to water. These results suggest that ethanol consumption delays the mortality of female rats in estrus phase after sepsis induction. Female characteristics, most probably sex hormones, may be involved in cytokine expression.
Resumo:
Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30–35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a “three-bottle choice” paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.
Resumo:
Ginger (Zingiber officinale Roscoe) belongs to the Zingiberacea family. It is a spice of great commercial importance. In this work ginger oleoresin was obtained with ethanol, isopropanol and liquid carbon dioxide. The chemical compositions of the extract were compared with each other. All oleoresin samples had monoterpenes and sesquiterpenes. Carboxylic acids were found in organic solvent extracts for an extraction time of 2 hours. The component responsible the for pungent characteristic of the oleoresin, gingerois, were detected in samples obtained with organic solvent for extraction times of 6 hours and in samples obtained with CO2 liquid for extraction times of 2 hours.
Antioxidant activity of rosemary and oregano ethanol extracts in soybean oil under thermal oxidation
Resumo:
Four experiments were conducted to measure the antioxidant activity of ethanol extracts of rosemary and oregano compared with synthetic antioxidants such as TBHQ and BHA/BHT. The antioxidant activity was determined and results differed from those of the Oven test at 63º C. Peroxide values and absorptivities at 232 nm of soybean oil under Oven test were lower in treatments with 25, 50, 75, 100 and 200 mg.Kg-1 TBHQ than in treatments with 1000 mg.Kg-1 oregano extract (O), 500 mg.Kg-1 rosemary extract (R) and their mixture R+O. All the treatments were effective in controlling the thermal oxidation of oils; the natural extracts were as effective as BHA+BHT and less effective than TBHQ. The natural extracts were mixed with 25, 50, 75 and 100 mg.Kg-1 TBHQ and then added to the oil. No improvement in antioxidative properties was observed. The best antioxidant concentration could be determined from polynomial regression and quadratic equation from the experimental data.
Resumo:
This thesis studies the use of machine vision in RDF quality assurance and manufacturing. Currently machine vision is used in recycling and material detection and some commer- cial products are available in the market. In this thesis an on-line machine vision system is proposed for characterizing particle size. The proposed machine vision system is based on the mapping between image segmenta- tion and the ground truth of the particle size. The results shows that the implementation of such machine vision system is feasible.
Resumo:
Seventy-one samples of sugarcane spirits from small and average size stills produced in the northern and southern Minas Gerais (Brazil) were analyzed for acrolein using HPLC (High Performance Liquid Chromatography). Ethanol and copper concentrations and volatile acidity were also determined according to methods established by the Ministry of Agriculture, Livestock and Supply (MAPA). A total of 9.85% of the samples tested showed levels of acrolein above the legal limits, while the copper concentrations of 21.00% of the samples and the volatile acidity of 8.85% of the samples were higher than the limits established by the Brazilian legislation. The concentration of acrolein varied from 0 to 21.97 mg.100 mL-1 of ethanol. However, no significant difference at 5% of significance was observed between the samples produced in the northern and southern Minas Gerais. The method used for determination of acrolein in sugarcane spirits involved the formation of a derivative with 2,4-dinitrophenylhydrazine (2,4-DNPH) and subsequent analysis by HPLC.
Resumo:
Physalis species are used in folk medicine for phytotherapeutic properties. The extracts of medicinal plants are known to possess cytotoxic and chemopreventative compounds. In this study we investigated antibacterial, antioxidant, DNA damage preventative properties of Physalis peruviana (golden berry) on leaf and shoot ethanol extracts and their effects on cytotoxicity of HeLa cells and expression of apoptotic pathway genes. Among the tested bacteria for antibacterial activity, maximum inhibition zone was determined in Lactococcus lactis. The phenolic content was found higher in leaf extracts than shoot extracts. The antioxidant activity showed the highest TEAC values of the leaf (2 mg/mL) and the shoot (0.5 mg/mL) extracts as 0.291±0.04 and 0.192±0.015, respectively. In DNA damage prevention assay both leaf and shoot extracts, especially 30 and 20 µg/mL concentrations, exhibited significant protection against DNA damage-induced by hydroxyl radical generated by Fenton reaction. Our results suggest that leaf and shoot extracts possess cytotoxic effect on HeLa cells when applied as 100 µg/mL concentration. Also mRNA expression analysis showed the alteration of antiapoptotic genes, so the results suggest that P. peruviana ethanol extracts induce apoptotic cell death and should be investigated for identification of active compounds and their mechanisms of action.
Resumo:
Abstract The aim of this work was to evaluate a non-agitated process of bioethanol production from soybean molasses and the kinetic parameters of fermentation using a strain of Saccharomyces cerevisiae (ATCC® 2345). Kinetic experiment was conducted in medium with 30% (w v-1) of soluble solids without supplementation or pH adjustment. The maximum ethanol concentration was in 44 hours, the ethanol productivity was 0.946 g L-1 h-1, the yield over total initial sugars (Y1) was 47.87%, over consumed sugars (Y2) was 88.08% and specific cells production rate was 0.006 h-1. The mathematical polynomial was adjusted to the experimental data and provided very similar parameters of yield and productivity. Based in this study, for one ton of soybean molasses can be produced 103 kg of anhydrous bioethanol.
Resumo:
Torrefaction is the partial pyrolysis of wood characterised by thermal degradation of predominantly hemicellulose under inert atmosphere. Torrefaction can be likened to coffee roasting but with wood in place of beans. This relatively new process concept makes wood more like coal. Torrefaction has attracted interest because it potentially enables higher rates of co-firing in existing pulverised-coal power plants and hence greater net CO2 emission reductions. Academic and entrepreneurial interest in torrefaction has sky rocketed in the last decade. Research output has focused on the many aspects of torrefaction – from detailed chemical changes in feedstock to globally-optimised production and supply scenarios with which to sustain EU emission-cutting directives. However, despite its seemingly simple concept, torrefaction has retained a somewhat mysterious standing. Why hasn’t torrefied pellet production become fully commercialised? The question is one of feasibility. This thesis addresses this question. Herein, the feasibility of torrefaction in co-firing applications is approached from three directions. Firstly, the natural limitations imposed by the structure of wood are assessed. Secondly, the environmental impact of production and use of torrefied fuel is evaluated and thirdly, economic feasibility is assessed based on the state of the art of pellet making. The conclusions reached in these domains are as follows. Modification of wood’s chemical structure is limited by its naturally existing constituents. Consequently, key properties of wood with regards to its potential as a co-firing fuel have a finite range. The most ideal benefits gained from wood torrefaction cannot all be realised simultaneously in a single process or product. Although torrefaction at elevated pressure may enhance some properties of torrefied wood, high-energy torrefaction yields are achieved at the expense of other key properties such as heating value, grindability, equilibrium moisture content and the ability to pelletise torrefied wood. Moreover, pelletisation of even moderately torrefied fuels is challenging and achieving a standard level of pellet durability, as required by international standards, is not trivial. Despite a reduced moisture content, brief exposure of torrefied pellets to water from rainfall or emersion results in a high level of moisture retention. Based on the above findings, torrefied pellets are an optimised product. Assessment of energy and CO2-equivalent emission balance indicates that there is no environmental barrier to production and use of torrefied pellets in co-firing. A long product transport distance, however, is necessary in order for emission benefits to exceed those of conventional pellets. Substantial CO2 emission reductions appear possible with this fuel if laboratory milling results carry over to industrial scales for direct co-firing. From demonstrated state-of-the-art pellet properties, however, the economic feasibility of torrefied pellet production falls short of conventional pellets primarily due to the larger capital investment required for production. If the capital investment for torrefied pellet production can be reduced significantly or if the pellet-making issues can be resolved, the two production processes could be economically comparable. In this scenario, however, transatlantic shipping distances and a dry fuel are likely necessary for production to be viable. Based on demonstrated pellet properties to date, environmental aspects and production economics, it is concluded that torrefied pellets do not warrant investment at this time. However, from the presented results, the course of future research in this field is clear.
Resumo:
Fluctuating commodity prices, foreign exchange rates and interest rates are causing changes in cash flows, market value and the companies’ profit. Most of the commodities are quoted in US dollar. Companies with non-dollar accounting face a double risk in the form of the commodity price risk and foreign exchange risk. The objective of this Master’s thesis is to find out how companies under commodity should manage foreign exchange exposure. The theoretical literature is based on foreign exchange risk, commodity risk and foreign exchange exposure management. The empirical research is done by using constructive modelling of a case company in the oil industry. The exposure is model with foreign exchange net cash flow and net working capital. First, the factors affecting foreign exchange exposure in case company are analyzed, then a model of foreign exchange exposure is created. Finally, the models are compared and the most suitable method is defined. According to the literature, foreign exchange exposure is the foreign exchange net cash flow. However, the results of the study show that foreign exchange risk can be managed also with net working capital. When the purchases, sales and storage are under foreign exchange risk, the best way to manage foreign exchange exposure is with combined net cash flow and net working capital method. The foreign exchange risk policy of the company defines the appropriate way to manage foreign exchange risk.
Resumo:
This master’s thesis examines the effects of increased material recycling on different waste-to-energy concepts. With background study and a developed techno-economic computational method the feasibility of chosen scenarios with different combinations of mechanical treatment and waste firing technologies can be evaluated. The background study covers the waste scene of Finland, and potential market areas Poland and France. Calculated cases concentrate on municipal solid waste treatment in the Finnish operational environment. The chosen methodology to approach the objectives is techno-economic feasibility assessment. It combines calculation methods of literature and practical engineering to define the material and energy balances in chosen scenarios. The calculation results together with other operational and financial data can be concluded to net present values compared between the scenarios. For the comparison, four scenarios, most vital and alternative between each other, are established. The baseline scenario is grate firing of source separated mixed municipal solid waste. Second scenario is fluidized bed combustion of solid recovered fuel produced in mechanical treatment process with metal separation. Third scenario combines a biomaterial separation process to the solid recovered fuels preparation and in the last scenario plastics are separated in addition to the previous operations. The results indicated that the mechanical treatment scenarios still need to overcome some problems to become feasible. Problems are related to profitability, residue disposal and technical reliability. Many uncertainties are also related to the data gathered over waste characteristics, technical performance and markets. With legislative support and development of further processing technologies and markets of the recycled materials the scenarios with biomaterial and plastic separation may operate feasibly in the future.
Resumo:
Suomi on sitoutunut vähentämään liikenteen kasvihuonekaasupäästöjä ja lisäämään uusiutuvan energian käyttöä liikenteessä vuoteen 2020 mennessä. EU:n energiastrategian mukaisesti liikenteelle on asetettu 10 prosentin tavoiteosuus uusiutuvan energian osalta liikenteen energian loppukulutuksesta. EU:n tavoitteiden lisäksi Suomi on asettanut kansalliseksi tavoitteekseen uusiutuvan energian osuudeksi 20 prosenttia liikenteen energian loppukulutuksesta. Nestemäiset biopolttoaineet ovat laadukkaasti ja kestävästi tuotettuina nopea ja kustannustehokas tapa vähentää liikenteen kasvihuonekaasupäästöjä. Etanoli on maailman käytetyin liikenteen biopolttoaine. Maailman etanolin tuotannossa käytetään pääosin tärkkelys- ja sokeripitoisia raaka-aineita, kuten maissia ja sokeriruokoa. Pääosa Suomessa käytetystä etanolipolttoaineesta tuodaan ulkomailta. Ainoa Suomessa etanolia liikennekäyttöön tuottava yritys on St1 Biofuels Oy, joka käyttää etanolin tuotannossa jäteperäisiä raaka-aineita. Tulevaisuudessa yhtiö suunnittelee tuottavansa valtaosan Suomessa käytetystä etanolista selluloosapohjaisista raaka-aineista. Etanoli soveltuu käytettäväksi moottoripolttoaineena sellaisenaan, mutta useista käyttöteknisistä syistä sitä käytetään enimmäkseen bensiinikomponenttina. Suurin osa Suomessa käytetystä etanolista muodostuu moottoribensiineille asetetuista jakeluvelvoitteista. Korkeaseosetanolipolttoaineen (E85) käytölle suunnitelluissa FFV-ajoneuvoissa voidaan käyttää etanolin ja bensiinin seosta aina 85 tilavuusprosentin etanolipitoisuuteen asti. Lisäaineistettua etanolia voidaan myös käyttää dieselmoottorin polttoaineena. Tulevaisuudessa etanolipolttoaineen kulutus Suomessa keskittynee pääasiassa nykytilanteen mukaisesti etanolin käyttöön bensiinikomponenttina.