909 resultados para HUMAN POPULATION
Resumo:
The major Neotropical malaria vector, Anopheles darlingi, was reintroduced into the Iquitos, Loreto, Peru area during the early 1990s, where it displaced other anophelines and caused a major malaria epidemic. Since then, case numbers in Loreto have fluctuated, but annual increases have been reported since 2012. The population genetic structure of An. darlingi sampled before and after the introduction of long-lasting insecticidal nets (LLINs) was investigated to test the hypothesis of temporal population change (2006 vs. 2012). Current samples of An. darlingi were used to test the hypothesis of ecological adaptation to human modified (highway) compared with wild (riverine) habitat, linked to forest cover. In total, 693 An. darlingi from nine localities in Loreto, Peru area were genotyped using 13 microsatellite loci. To test the hypothesis of habitat differentiation in An. darlingi biting time patterns, HBR and EIR, four collections of An. darlingi from five localities (two riverine and three highway) were analysed. Analyses of microsatellite loci from seven (2006) and nine settlements (2012-2014) in the Iquitos area detected two distinctive populations with little overlap, although it is unclear whether this population replacement event is associated with LLIN distribution or climate. Within the 2012-2014 population two admixed subpopulations, A and B, were differentiated by habitat, with B significantly overrepresented in highway, and both in near-equal proportions in riverine. Both subpopulations had a signature of expansion and there was moderate genetic differentiation between them. Habitat and forest cover level had significant effects on HBR, such that Plasmodium transmission risk, as measured by EIR, in peridomestic riverine settlements was threefold higher than in peridomestic highway settlements. HBR was directly associated with available host biomass rather than forest cover. A population replacement event occurred between 2006 and 2012-2014, concurrently with LLIN distribution and a moderate El Niño event, and prior to an increase in malaria incidence. The likely drivers of this replacement cannot be determined with current data. The present-day An. darlingi population is composed of two highly admixed subpopulations, which appear to be in an early stage of differentiation, triggered by anthropogenic alterations to local habitat.
Resumo:
Intestinal parasitosis is highly prevalent worldwide, being among the main causes of illness and death in humans. Currently, laboratory diagnosis of the intestinal parasites is accomplished through manual technical procedures, mostly developed decades ago, which justifies the development of more sensitive and practical techniques. Therefore, the main objective of this study was to develop, evaluate, and validate a new parasitological technique referred to as TF-Test Modified, in comparison to three conventional parasitological techniques: TF-Test Conventional; Rugai, Mattos & Brisola; and Helm Test/Kato-Katz. For this realization, we collected stool samples from 457 volunteers located in endemic areas of Campinas, São Paulo, Brazil, and statistically compared the techniques. Intestinal protozoa and helminths were detected qualitatively in 42.23% (193/457) of the volunteers by TF-Test Modified technique, against 36.76% (168/457) by TF-Test Conventional, 5.03% (23/457) by Helm Test/Kato-Katz, and 4.16% (19/457) by Rugai, Mattos & Brisola. Furthermore, the new technique presented almost perfect kappa agreement in all evaluated parameters with 95% (P < 0.05) of estimation. The current study showed that the TF-Test Modified technique can be comprehensively used in the diagnosis of intestinal protozoa and helminths, and its greater diagnostic sensitivity should help improving the quality of laboratory diagnosis, population surveys, and control of intestinal parasites.
Resumo:
Intestinal parasitosis is highly prevalent worldwide, being among the main causes of illness and death in humans. Currently, laboratory diagnosis of the intestinal parasites is accomplished through manual technical procedures, mostly developed decades ago, which justifies the development of more sensitive and practical techniques. Therefore, the main objective of this study was to develop, evaluate, and validate a new parasitological technique referred to as TF-Test Modified, in comparison to three conventional parasitological techniques: TF-Test Conventional; Rugai, Mattos & Brisola; and Helm Test/Kato-Katz. For this realization, we collected stool samples from 457 volunteers located in endemic areas of Campinas, São Paulo, Brazil, and statistically compared the techniques. Intestinal protozoa and helminths were detected qualitatively in 42.23% (193/457) of the volunteers by TF-Test Modified technique, against 36.76% (168/457) by TF-Test Conventional, 5.03% (23/457) by Helm Test/Kato-Katz, and 4.16% (19/457) by Rugai, Mattos & Brisola. Furthermore, the new technique presented “almost perfect kappa” agreement in all evaluated parameters with 95% (P < 0.05) of estimation. The current study showed that the TF-Test Modified technique can be comprehensively used in the diagnosis of intestinal protozoa and helminths, and its greater diagnostic sensitivity should help improving the quality of laboratory diagnosis, population surveys, and control of intestinal parasites.
Resumo:
Objectives: Limbal stem cells (LSC) are self-renewing, highly proliferative cells in vitro, which express a set of specific markers and in vivo have the capacity to reconstruct the entire corneal epithelium in cases of ocular surface injury. Currently, LSC transplantation is a commonly used procedure in patients with either uni- or bilateral total limbal stem cells deficiency (TLSCD). Although LSC transplantation holds great promise for patients, several problems need to be overcome. In order to find an alternative source of cells that can partially substitute LSC in cornea epithelium reconstruction, we aimed at investigating whether human immature dental pulp stem cells (hIDPSC) would present similar key characteristics as LSC and whether they could be used for corneal surface reconstruction in a rabbit TLSCD model. Materials: We used hIDPSC, which co-express mesenchymal and embryonic stem cell markers and present the capacity to differentiate into derivative cells of the three germinal layers. TLSCD was induced by chemical burn in one eye of rabbits. After 30 days, the opaque tissue formed was removed by superficial keratectomy. Experimental group received undifferentiated hIDPSC, while control group only received amniotic membrane (AM). Both groups were sacrificed after 3 months. Results and conclusions: We have demonstrated, using immunohistochemistry and reverse transcription-polymerase chain reaction, that hIDPSCs express markers in common with LSC, such as ABCG2, integrin beta 1, vimentin, p63, connexin 43 and cytokeratins 3/12. They were also capable of reconstructing the eye surface after induction of unilateral TLSCD in rabbits, as shown by morphological and immunohistochemical analysis using human-specific antibodies against limbal and corneal epithelium. Our data suggest that hIDPSCs share similar characteristics with LSC and might be used as a potential alternative source of cells for corneal reconstruction.
Resumo:
Objectives: Robust evidence now supports human papillomavirus (HPV) testing as a more effective option to screening and as more sensitive than cytology in detecting high-grade cervical intraepithelial neoplasia. Our goal was to analyze the performance of the Hybrid Capture II (HC2) assay for high-risk HPV (hrHPV) in women undergoing gynecological examination at a public health hospital as part of the evaluation of HPV screening as an alternative or complement to cytology. Study Design: This analysis is a subset of a cross-sectional study carried out at a large public hospital serving a predominantly low-resource population. A total of 705 women were enrolled; the sensitivity and specificity of each test were estimated and compared. Results: The analysis identified 272 hrHPV-positive women (mean age 36.3 years) and 433 hrHPV-negative women (mean age 41.2 years). HPV testing showed a significantly increased sensitivity of the HC2 assay versus cytology (84.5 vs. 69.7%; p < 0.0001) but a lower specificity (49.90 vs. 88.78%; p < 0.0001). Conclusion: The combination of both methods seems to be useful in improving detection of cervical lesions. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Human parvovirus B19 (B19V) infection can be a life-threatening condition among patients with hereditary (chronic) hemolytic anemias. Our objective was to characterize the infection molecularly among patients with sickle cell disease and thalassemia. Forty-seven patients (37 with sickle cell disease, and 10 with beta-thalassemia major) as well as 47 healthy blood donors were examined for B19V infection by anti-B19V IgG enzyme immunoassay, quantitative PCR, which detects all B19V genotypes, and DNA sequencing. B19V viremia was documented in nine patients (19.1%) as two displayed acute infection and the rest had a low titre viremia (mean 3.4 x 10(4) copies/mL). All donors were negative for B19V DNA. Anti-B19V IgG was detected in 55.3% of the patients and 57.4% among the donors. Based on partial NS1 fragments, all patient isolates were classified as genotype 1 and subgenotype 1A. The evolutionary events of the examined partial NS1 gene sequence were associated with a lack of positive selection. The quantification of all B19V genotypes by a single hydrolytic probe is a technically useful method, but it is difficult to establish relationships between B19V sequence characteristics and infection outcome.
Resumo:
Facioscapulohumeral muscular dystrophy (FSHD) is a common hereditary myopathy causally linked to reduced numbers (<= 8) of 3.3 kilobase D4Z4 tandem repeats at 4q35. However, because individuals carrying D4Z4-reduced alleles and no FSHD and patients with FSHD and no short allele have been observed, additional markers have been proposed to support an FSHD molecular diagnosis. In particular a reduction in the number of D4Z4 elements combined with the 4A(159/161/168)PAS haplotype (which provides the possibility of expressing DUX4) is currently used as the genetic signature uniquely associated with FSHD. Here, we analyzed these DNA elements in more than 800 Italian and Brazilian samples of normal individuals unrelated to any FSHD patients. We find that 3% of healthy subjects carry alleles with a reduced number (4-8) of D4Z4 repeats on chromosome 4q and that one-third of these alleles, 1.3%, occur in combination with the 4A161PAS haplotype. We also systematically characterized the 4q35 haplotype in 253 unrelated FSHD patients. We find that only 127 of them (50.1%) carry alleles with 1-8 D4Z4 repeats associated with 4A161PAS, whereas the remaining FSHD probands carry different haplotypes or alleles with a greater number of D4Z4 repeats. The present study shows that the current genetic signature of FSHD is a common polymorphism and that only half of FSHD probands carry this molecular signature. Our results suggest that the genetic basis of FSHD, which is remarkably heterogeneous, should be revisited, because this has important implications for genetic counseling and prenatal diagnosis of at-risk families.
Resumo:
Objectives: The aim of this study was to identify communities at high risk of transmitting recessive genetic disorders by measuring levels of endogamy and offspring's rate of disabilities. Methods: In a house-to-house population based-survey in the state of Paraiba, 20,462 couples were interviewed regarding kinship relation, number of siblings and offspring affected by mental or physical disabilities. Results: The rate of consanguineous unions in the communities ranged from 6.0% to 41.14%, showing an average value of 20.19% +/- 9.13%. The overall average inbreeding coefficient (F) was 0.00602 +/- 0.00253, ranging from 0.00134 to 0.01182. Communities situated on the backlands had an increased average value of F compared to those closer to the seashore (P = 0.024). The average rate of disabled offspring varied from 2.96% +/- 0.68% for unrelated unions to 10.44% +/- 16.86% for related couples at the level of double first cousins or uncleniece. The Spearman correlation coefficient between the overall rate of disabled offspring from all couples together and F was 0.510 (P < 0.01). Conclusion: Inbreeding increases the risk of disability which is unevenly distributed, varying considerably even in neighboring communities with similar Human Development Index and population density. Higher inbreeding communities are mostly located on the more economically underdeveloped backlands than on the coastal region. The identification of communities at high risk for genetic disorders could serve as basis for the establishment of Community Genetics programs. Am. J. Hum. Biol., 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
Introduction: Rodent-borne hantaviruses cause severe human diseases. We completed a serological survey of hantavirus infection in rural inhabitants of Turvo County, in the southern state of Santa Catarina, Brazil, in which seropositivity for hantavirus was correlated to previous disease in the participants. Methods: The levels of IgG antibodies to hantavirus Araraquara in the sera of 257 individuals were determined using an immunoenzymatic assay. Results: IgG antibodies to hantavirus were found in 2.3% of the participants. All seropositive participants reported previous disease with symptoms suggestive of hantavirus cardiopulmonary syndrome. Conclusions: Human infections causing unreported cardiopulmonary syndrome probably occur in the southern state of Santa Catarina.
Resumo:
Objective: To investigate the relationship between TXNIP polymorphisms, diabetes and hypertension phenotypes in the Brazilian general population. Methods: Five hundred seventy-six individuals randomly selected from the general urban population according to the MONICA-WHO project guidelines were phenotyped for cardiovascular risk factors. A second, independent, sample composed of 487 family-trios from a different site was also selected. Nine TXNIP polymorphisms were studied. The potential association between TXNIP variability and glucose-phenotypes in children was also explored. TXNIP expression was quantified by real-time PCR in 53 samples from human smooth muscle cells primary culture. Results: TXNIP rs7211 and rs7212 polymorphisms were significantly associated with glucose and blood pressure related phenotypes. In multivariate logistic regression models the studied markers remained associated with diabetes even after adjustment for covariates. TXNIP rs7211 T/rs7212 G haplotype (present in approximately 17% of individuals) was significantly associated to diabetes in both samples. In children, the TXNIP rs7211 T/rs7212 G haplotype was associated with fasting insulin concentrations. Finally, cells harboring TXNIP rs7212 G allele presented higher TXNIP expression levels compared with carriers of TXNIP rs7212 CC genotype (p = 0.02). Conclusion: Carriers of TXNIP genetic variants presented higher TXNIP expression, early signs of glucose homeostasis derangement and increased susceptibility to chronic metabolic conditions such as diabetes and hypertension. Our data suggest that genetic variation in the TXNIP gene may act as a "common ground" modulator of both traits: diabetes and hypertension. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The impact of biogeographical ancestry, self-reported 'race/color' and geographical origin on the frequency distribution of 10 CYP2C functional polymorphisms (CYP2C8*2, *3, *4, CYP2C9*2, *3, *5, *11, CYP2C19*2, *3 and *17) and their haplotypes was assessed in a representative cohort of the Brazilian population (n = 1034). TaqMan assays were used for allele discrimination at each CYP2C locus investigated. Individual proportions of European, African and Amerindian biogeographical ancestry were estimated using a panel of insertion-deletion polymorphisms. Multinomial log-linear models were applied to infer the statistical association between the CYP2C alleles and haplotypes (response variables), and biogeographical ancestry, self-reported Color and geographical origin (explanatory variables). The results showed that CYP2C19*3, CYP2C9*5 and CYP2C9*11 were rare alleles (<1%), the frequency of other variants ranged from 3.4% (CYP2C8*4) to 17.3% (CYP2C19*17). Two distinct haplotype blocks were identified: block 1 consists of three single nucleotide polymorphisms (SNPs) (CYP2C19*17, CYP2C19*2 and CYP2C9*2) and block 2 of six SNPs (CYP2C9*11, CYP2C9*3, CYP2C9*5, CYP2C8*2, CYP2C8*4 and CYP2C8*3). Diplotype analysis generated 41 haplotypes, of which eight had frequencies greater than 1% and together accounted for 96.4% of the overall genetic diversity. The distribution of CYP2C8 and CYP2C9 (but not CYP2C19) alleles, and of CYP2C haplotypes was significantly associated with self-reported Color and with the individual proportions of European and African genetic ancestry, irrespective of Color self-identification. The individual odds of having alleles CYP2C8*2, CYP2C8*3, CYP2C9*2 and CYP2C9*3, and haplotypes including these alleles, varied continuously as the proportion of European ancestry increased. Collectively, these data strongly suggest that the intrinsic heterogeneity of the Brazilian population must be acknowledged in the design and interpretation of pharmacogenomic studies of the CYP2C cluster in order to avoid spurious conclusions based on improper matching of study cohorts. This conclusion extends to other polymorphic pharmacogenes among Brazilians, and most likely to other admixed populations of the Americas. The Pharmacogenomics Journal (2012) 12, 267-276; doi: 10.1038/tpj.2010.89; published online 21 December 2010
Resumo:
The non-classical human leukocyte antigen (HLA) class I genes present a very low rate of variation. So far, only 10 HLA-E alleles encoding three proteins have been described, but only two are frequently found in worldwide populations. Because of its historical background, Brazilians are very suitable for population genetic studies. Therefore, 104 bone marrow donors from Brazil were evaluated for HLA-E exons 14. Seven variation sites were found, including two known single nucleotide polymorphisms (SNPs) at positions +424 and +756 and five new SNPs at positions +170 (intron 1), +1294 (intron 3), +1625, +1645 and +1857 (exon 4). Haplotyping analysis did show eight haplotypes, three of them known as E*01:01:01, E*01:03:01 and E*01:03:02:01 and five HLA-E new alleles that carry the new variation sites. The HLA-E*01:01:01 allele was the predominant haplotype (62.50%), followed by E*01:03:02:01 (24.52%). Selective neutrality tests have disclosed an interesting pattern of selective pressures in which balancing selection is probably shaping allele frequency distributions at an SNP at exon 3 (codon 107), sequence diversity at exon 4 and the non-coding regions is facing significant purifying pressure. Even in an admixed population such as the Brazilian one, the HLA-E locus is very conserved, presenting few polymorphic SNPs in the coding region.
Resumo:
Background. Neurodevelopmental alterations have been described inconsistently in psychosis probably because of lack of standardization among studies. The aim of this study was to conduct the first longitudinal and population-based magnetic resonance imaging (MRI) evaluation of the presence and size of the cavum septum pellucidum (CSP) and adhesio interthalamica (AI) in a large sample of patients with first-episode psychosis (FEP). Method. FEP patients (n=122) were subdivided into schizophrenia (n=62), mood disorders (n=46) and other psychosis (n=14) groups and compared to 94 healthy next-door neighbour controls. After 13 months, 80 FEP patients and 52 controls underwent a second MRI examination. Results. We found significant reductions in the AI length in schizophrenia FEP in comparison with the mood disorders and control subgroups (longer length) at the baseline assessment, and no differences in any measure of the CSP. By contrast, there was a diagnosis x time interaction for the CSP length, with a more prominent increase for this measure in the psychosis group. There was an involution of the AI length over time for all groups but no diagnosis x time interaction. Conclusions. Our findings suggest that the CSP per se may not be linked to the neurobiology of emerging psychotic disorders, although it might be related to the progression of the disease. However, the fact that the AI length was shown to be shorter at the onset of the disorder supports the neurodevelopmental model of schizophrenia and indicates that an alteration in this grey matter junction may be a risk factor for developing psychosis.
Resumo:
Ingestion of vegetables containing heavy metals is one of the main ways in which these elements enter the human body. Once entered, heavy metals are deposited in bone and fat tissues, overlapping noble minerals. Slowly released into the body, heavy metals can cause an array of diseases. This study aimed to investigate the concentrations of cadmium, nickel, lead, cobalt and chromium in the most frequently consumed foodstuff in the Sao Paulo State, Brazil and to compare the heavy metal contents with the permissible limits established by the Brazilian legislation. A value of intake of heavy metals in human diets was also calculated to estimate the risk to human health. Vegetable samples were collected at the Sao Paulo General Warehousing and Centers Company, and the heavy metal content was determined by atomic absorption spectrophotometry. All sampled vegetables presented average concentrations of Cd and Ni lower than the permissible limits established by the Brazilian legislation. Pb and Cr exceeded the limits in 44 % of the analyzed samples. The Brazilian legislation does not establish a permissible limit for Co contents. Regarding the consumption habit of the population in the Sao Paulo State, the daily ingestion of heavy metals was below the oral dose of reference, therefore, consumption of these vegetables can be considered safe and without risk to human health.
Order-Disorder Transitions Govern Kinetic Cooperativity and Allostery of Monomeric Human Glucokinase
Resumo:
Glucokinase (GCK) catalyzes the rate-limiting step of glucose catabolism in the pancreas, where it functions as the body's principal glucose sensor. GCK dysfunction leads to several potentially fatal diseases including maturity-onset diabetes of the young type II (MODY-II) and persistent hypoglycemic hyperinsulinemia of infancy (PHHI). GCK maintains glucose homeostasis by displaying a sigmoidal kinetic response to increasing blood glucose levels. This positive cooperativity is unique because the enzyme functions exclusively as a monomer and possesses only a single glucose binding site. Despite nearly a half century of research, the mechanistic basis for GCK's homotropic allostery remains unresolved. Here we explain GCK cooperativity in terms of large-scale, glucose-mediated disorder-order transitions using 17 isotopically labeled isoleucine methyl groups and three tryptophan side chains as sensitive nuclear magnetic resonance (NMR) probes. We find that the small domain of unliganded GCK is intrinsically disordered and samples a broad conformational ensemble. We also demonstrate that small-molecule diabetes therapeutic agents and hyperinsulinemia-associated GCK mutations share a strikingly similar activation mechanism, characterized by a population shift toward a more narrow, well-ordered ensemble resembling the glucose-bound conformation. Our results support a model in which GCK generates its cooperative kinetic response at low glucose concentrations by using a millisecond disorder-order cycle of the small domain as a "time-delay loop," which is bypassed at high glucose concentrations, providing a unique mechanism to allosterically regulate the activity of human GCK under physiological conditions.