956 resultados para HIGH-LYING EXCITED STATE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carotenoids are important biomolecules that are ubiquitous in nature and find widespread application in medicine. In photosynthesis, they have a large role in light harvesting (LH) and photoprotection. They exert their LH function by donating their excited singlet state to nearby (bacterio)chlorophyll molecules. In photosynthetic bacteria, the efficiency of this energy transfer process can be as low as 30%. Here, we present evidence that an unusual pathway of excited state relaxation in carotenoids underlies this poor LH function, by which carotenoid triplet states are generated directly from carotenoid singlet states. This pathway, operative on a femtosecond and picosecond timescale, involves an intermediate state, which we identify as a new, hitherto uncharacterized carotenoid singlet excited state. In LH complex-bound carotenoids, this state is the precursor on the reaction pathway to the triplet state, whereas in extracted carotenoids in solution, this state returns to the singlet ground state without forming any triplets. We discuss the possible identity of this excited state and argue that fission of the singlet state into a pair of triplet states on individual carotenoid molecules constitutes the mechanism by which the triplets are generated. This is, to our knowledge, the first ever direct observation of a singlet-to-triplet conversion process on an ultrafast timescale in a photosynthetic antenna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general method is described for constructing a helical oligoproline assembly having a spatially ordered array of functional sites protruding from a proline-II helix. Three different redox-active carboxylic acids were coupled to the side chain of cis-4-amino-L-proline. These redox modules were incorporated through solid-phase peptide synthesis into a 13-residue helical oligoproline assembly bearing in linear array a phenothiazine electron donor, a tris(bipyridine)ruthenium(II) chromophore, and an anthraquinone electron acceptor. Upon transient 460-nm irradiation in acetonitrile, this peptide triad formed with 53% efficiency an excited state containing a phenothiazine radical cation and an anthraquinone radical anion. This light-induced redox-separated state had a lifetime of 175 ns and stored 1.65 eV of energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is devoted to the investigation of inter and intramolecular charge transfer (CT) in molecular functional materials and specifically organic dyes and CT crystals. An integrated approach encompassing quantum-chemical calculations, semiempirical tools, theoretical models and spectroscopic measurements is applied to understand structure-property relationships governing the low-energy physics of these materials. Four main topics were addressed: 1) Spectral properties of organic dyes. Charge-transfer dyes are constituted by electron donor (D) and electron acceptor (A) units linked through bridge(s) to form molecules with different symmetry and dimensionality. Their low-energy physics is governed by the charge resonance between D and A groups and is effectively described by a family of parametric Hamiltonians known as essential-state models. These models account for few electronic states, corresponding to the main resonance structures of the relevant dye, leading to a simple picture that is completed introducing the coupling of the electronic system to molecular vibrations, treated in a non-adiabatic way, and an effective classical coordinate, describing polar solvation. In this work a specific essential-state model was proposed and parametrized for the dye Brilliant Green. The central issue in this work has been the definition of the diabatic states, a not trivial task for a multi-branched chromophore. In a second effort, we have used essential-state models for the description of the early-stage dynamics of excited states after ultrafast excitation. Crucial to this work is the fully non-adiabatic treatment of the coupled electronic and vibrational motion, allowing for a reliable description of the dynamics of systems showing a multistable, broken-symmetry excited state. 2) Mixed-stack CT salts. Mixed-stack (MS) CT crystals are an interesting class of multifunctional molecular materials, where D and A molecules arrange themselves to form stacks, leading to delocalized electrons in one dimension. The interplay between the intermolecular CT, electrostatic interactions, lattice phonons and molecular vibrations leads to intriguing physical properties that include (photoinduced) phase transitions, multistability, antiferromagnetism, ferroelectricity and potential multiferroicity. The standard microscopic model to describe this family of materials is the Modified Hubbard model accounting for electron-phonon coupling (Peierls coupling), electron-molecular vibrations coupling (Holstein coupling) and electrostatic interactions. We adopt and validate a method, based on DFT calculations on dimeric DA structures, to extract relevant model parameters. The approach offers a powerful tool to shed light on the complex physics of MS-CT salts. 3) Charge transfer in organic radical dipolar dyes. In collaboration with the group of Prof. Jaume Veciana (ICMAB- Barcellona), we have studied spectral properties of a special class of CT dyes with D-bridge-A structure where the acceptor group is a stable radical (of the perchlorotriphenylmethyl, PTM, family), leading to an open-shell CT dyes. These materials are of interest since they associate the electronic and optical properties of CT dyes with magnetic properties from the unpaired electron. The first effort was devoted to the parametrization of the relevant essential-state model. Two strategies were adopted, one based on the calculation of the low-energy spectral properties, the other based on the variation of ground state properties with an applied electric field. 4) The spectral properties of organic nanoparticles based on radical species are investigated in collaboration with Dr. I. Ratera (ICMAB- Barcellona). Intriguing spectroscopic behavior was observed pointing to the presence of excimer states. In an attempt to rationalize these findings, extensive calculations (TD-DFT and ZINDO) were performed. The results for the isolated dyes are validated against experimental spectra in solution. To address intermolecular interactions we studied dimeric structures in the gas phase, but the preliminary results obtained do not support excimer formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho, foram estudadas as propriedades fotoquímica e/ou fotofísica de alguns compostos de coordenação de rênio(l) e ferro(I I). A irradiação dos complexos fac-[Re(CO)3(NN)(trans-L)]+, NN= 4,7-difenil-1,10- fenantrolina (ph2phen) ou 5-cloro-1,10-fenantrolina (Clphen) e L = 1,2-bis(4-piridil)etileno (bpe) ou 4-estirilpiridina (stpy), em acetonitrila ou em filme de poli(metacrilato de metila) (PMMA) resulta em variações espectrais condizentes com a fotoisomerização trans-cis do ligante coordenado. A determinação dos rendimentos quânticos para a fotorreação pela variação espectral resultou em valores aparentes, uma vez que o reagente e o fotoproduto absorvem na mesma região. Para a determinação do rendimento quântico real, Φreal, utilizou-se a técnica de 1H RMN, na qual os sinais do fotoproduto e do reagente são observados em regiões distintas com diferentes constantes de acoplamento. Os valores de Φreal obtidos para fac-[Re(CO)3h(NN)(trans-bpe)]+ (ph2phen: Φ313= 0,43 ± 0,03; Φ365= 0,44 ± 0,02; Φ404= 0,43 ± 0,02; Clphen: Φ313= 0,56 ± 0,03; Φ365= 0,55 ± 0,04; Φ404= 0,57 ± 0,06) são independentes do comprimento de onda de irradiação, indicando a existência de um único canal para a população do estado excitado 3ILtrans-bpe. Por outro lado, para fac-[Re(CO)3(NN)(trans-stpy)]+, os valores de Φreal sob irradiação a 404 nm são menores que os determinados para os demais comprimentos de onda de irradiação (ph2phen: Φ313= 0,60 ± 0,05; Φ365= 0,64 ± 0,09; Φ404= 0,42 ± 0,03; Clphen: Φ313= 0,52 ± 0,05; Φ365= 0,58 ± 0,02; Φ404= 0,41 ± 0,06), indicando que, a energias maiores, em que o Iigante absorve significativamente, deve existir a contribuição de outro canal para a população do estado excitado 3ILtrans-stpy. A eficiência do fotoprocesso foi avaliada por meio da substituição dos ligantes NN e/ou L, e a diferença nos valores de Φreal entre os complexos deve estar relacionada principalmente com as distintas eficiências de cruzamento intersistemas. o fotoprocesso altera as propriedades fotofísicas desses complexos. Os isômeros trans apresentam fraca ou nenhuma emissão a 298 K, enquanto os fotoprodutos, fac-[Re(CO)3(NN)(cis-L)]+, apresentam intensa luminescência dominada pelo estado excitado 3MLCTRe→NN, que é sensivel à rigidez do meio. A reatividade fotoquímica dos pentacianoferratos(II) [Fe(CN)5 (NN)]3-, NN= 2aminobenzilamina (aba), 2-aminobenzamida (ab), 2-(dimetilaminometil)-3-hidroxipiridina (dmampy), 2-aminometilpiridina (ampy), 2-aminoetilpiridina (aepy) ou 2-(2metilaminoetil) piridina (maepy), também foi investigada. A irradiação desses complexos resulta na fotossubstituição do CN-, a qual só pode ser detectada quando o ligante possui um segundo grupo coordenante nas proximidades da esfera de coordenação. Os rendimentos quânticos da fotossubstituição são dependentes do comprimento de onda de irradiação (Φ313= 0,13 ± 0,01; Φ334= 0,091 ± 0,001; Φ365= 0,056 ± 0,002; Φ404= 0,022 ± 0,002; Φ436= 0,015 ± 0,001, por exemplo, para NN = aba) e indicam a existência de canais distintos pelos quais a fotorreação ocorre ou as diferentes eficiências de cruzamento intersistema para a população do estado excitado reativo. A eficiência do fotoprocesso também depende do Iigante utilizado (λirr= 365 nm: Φaba= 0,056, Φab= 0,14, Φampy= 0,046, Φaepy= 0,066, Φmaepy= 0,069 e Φdmampy= 0,12). Na série das diaminas, o rendimento quântico é maior para [Fe(CN)5(ab)]3-, que possui dois sítios para ocorrer o fechamento do anel. Na série das aminopiridinas, observa-se a influência do comprimento da cadeia na eficiência do fechamento do anel. A presença de metilas ligadas ao nitrogênio alifático deve ter pouca ou nenhuma influência na eficiência do fotoprocesso.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research sets out to build upon excited state o-azaxylylene cycloaddition. The mechanism behind the excitation and cycloaddition process of photogenerated o-azaxylylenes was determined experimentally. Time-correlated single-photon counting, steady-state spectroscopy, triplet quenching experiments, and quantum yield studies provided evidence suggesting that excited state intramolecular proton transfer is followed by intersystem crossing and stepwise addition to the tethered unsaturated pendant. In keeping with the principles of diversity oriented synthesis, a modular approach was taken to gain access to a diverse array of N,O,S-Polyheterocycles which were modified postphotochemically via Suzuki coupling to yield fused biaryls. Cycloaddition products, outfitted with halogens in the aromatic ring of the o-azaxylylene, proved to be reactive with a variety of boronic acids resulting in a rapid growth in structural complexity. A novel procedure was developed that utilized multiple o-azaxylylene cores in a photochemical cascade transformation yielding complex scaffolds of unprecedented topology. The photoprecursors were produced in a one-pot two-step sequence from commercially available starting materials, and upon irradiation yield structures containing up to five fused hetrocyclic rings, and showed complete diastereoselectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

0We study the exact solution for a two-mode model describing coherent coupling between atomic and molecular Bose-Einstein condensates (BEC), in the context of the Bethe ansatz. By combining an asymptotic and numerical analysis, we identify the scaling behaviour of the model and determine the zero temperature expectation value for the coherence and average atomic occupation. The threshold coupling for production of the molecular BEC is identified as the point at which the energy gap is minimum. Our numerical results indicate a parity effect for the energy gap between ground and first excited state depending on whether the total atomic number is odd or even. The numerical calculations for the quantum dynamics reveals a smooth transition from the atomic to the molecular BEC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple emission peaks have been observed from surface passivated PbS nanocrystals displaying strong quantum confinement. The emission spectra are shown to be strongly dependent on the excited-state parity. We also find that intraband energy relaxation from initial states excited far above the band-edge is nearly three orders of magnitude slower than that found in other nanocrystal quantum dots, providing evidence of inefficient energy relaxation via phonon emission. The initial-state parity dependence of the photoluminescent emission properties suggests that energy relaxation from the higher excited states occurs via a radiative cascade, analogous to energy relaxation in atomic systems. Such radiative cascade emission is possible from ideal zero-dimensional semiconductors, where electronic transitions can be decoupled from phonon modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis, structural characterization, and photophysical behavior of a 14-membered tetraazamacrocycle with pendant 4-dimethylaminobenzyl (DMAB) and 9-anthracenylmethyl groups is reported (L-3, 6-((9-anthracenylmethyl)amino)-trans-6,13-dimethyl-13-((4-dimethylaminobenzyl)amino)-1,4,8,11-tetraaza-cyclotetradecane). In its free base form, this compound displays rapid intramolecular photoinduced electron transfer (PET) quenching of the anthracene emission, with both the secondary amines and the DMAB group capable of acting as electron donors. When complexed with Zn(II), the characteristic fluorescence of the anthracene chromophore is restored as the former of these pathways is deactivated by coordination. Importantly, it is shown that the DMAB group, which remains uncoordinated and PET active, acts only very weakly to quench emission, by comparison to the behavior of a model Zn complex lacking the pendant DMAB group, [ZnL2](2+) (Chart 1). By contrast, Stern-Volmer analysis of intermolecular quenching of [ZnL2](2+) by N,N-dimethylaniline (DMA) has shown that this reaction is diffusion limited. Hence, the pivotal role of the bridge in influencing intramolecular PET is highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we investigate the energy gap between the ground state and the first excited state in a model of two single-mode Bose-Einstein condensates coupled via Josephson tunnelling. The ene:rgy gap is never zero when the tunnelling interaction is non-zero. The gap exhibits no local minimum below a threshold coupling which separates a delocalized phase from a self-trapping phase that occurs in the absence of the external potential. Above this threshold point one minimum occurs close to the Josephson regime, and a set of minima and maxima appear in the Fock regime. Expressions for the position of these minima and maxima are obtained. The connection between these minima and maxima and the dynamics for the expectation value of the relative number of particles is analysed in detail. We find that the dynamics of the system changes as the coupling crosses these points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’atrofia ottica dominante (ADOA) è una malattia mitocondriale caratterizzata da difetti visivi, che si manifestano durante l’infanzia, causati da progressiva degenerazione delle cellule gangliari della retina (RGC). ADOA è una malattia genetica associata, nella maggior parte dei casi, a mutazioni nel gene OPA1 che codifica per la GTPasi mitocondriale OPA1, appartenente alla famiglia delle dinamine, principalmente coinvolta nel processo di fusione mitocondriale e nel mantenimento del mtDNA. Finora sono state identificate più di 300 mutazioni patologiche nel gene OPA1. Circa il 50% di queste sono mutazioni missenso, localizzate nel dominio GTPasico, che si pensa agiscano come dominanti negative. Questa classe di mutazioni è associata ad una sindrome più grave nota come “ADOA-plus”. Nel lievito Saccharomyces cerevisiae MGM1 è l’ortologo del gene OPA1: nonostante i due geni abbiano domini funzionali identici le sequenze amminoacidiche sono scarsamente conservate. Questo costituisce una limitazione all’uso del lievito per lo studio e la validazione di mutazioni patologiche nel gene OPA1, infatti solo poche sostituzioni possono essere introdotte e studiate nelle corrispettive posizioni del gene di lievito. Per superare questo ostacolo è stato pertanto costruito un nuovo modello di S. cerevisiae, contenente il gene chimerico MGM1/OPA1, in grado di complementare i difetti OXPHOS del mutante mgm1Δ. Questo gene di fusione contiene una larga parte di sequenza corrispondente al gene OPA1, nella quale è stato inserito un set di nuove mutazioni trovate in pazienti affetti da ADOA e ADOA-plus. La patogenicità di queste mutazioni è stata validata sia caratterizzando i difetti fenotipici associati agli alleli mutati, sia la loro dominanza/recessività nel modello di lievito. A tutt’oggi non è stato identificato alcun trattamento farmacologico per la cura di ADOA e ADOA-plus. Per questa ragione abbiamo utilizzato il nostro modello di lievito per la ricerca di molecole che agiscono come soppressori chimici, ossia composti in grado di ripristinare i difetti fenotipici indotti da mutazioni nel gene OPA1. Attraverso uno screening fenotipico high throughput sono state testate due differenti librerie di composti chimici. Questo approccio, noto con il nome di drug discovery, ha permesso l’identificazione di 23 potenziali molecole attive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We combine all the known experimental demonstrations and spectroscopic parameters into a numerical model of the Ho3+ -doped fluoride glass fiber laser system. Core-pumped and cladding-pumped arrangements were simulated for all the population-bottlenecking mitigation schemes that have been tested, and good agreement between the model and the previously reported experimental results was achieved in most but not in all cases. In a similar way to Er3+ -doped fluoride glass fiber lasers, we found that the best match with measurements required scaled-down rate parameters for the energy transfer processes that operate in moderate to highly concentrated systems. The model isolated the dominant processes affecting the performance of each of the bottlenecking mitigation schemes and pump arrangements. It was established that pump excited-state absorption is the main factor affecting the performance of the core-pumped demonstrations of the laser, while energy transfer between rare earth ions is the main factor controlling the performance in cladding-pumped systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An ordered macroporous host (mac-SiO2) has been used to prevent aggregation of layered photocatalysts based on carbon nitride. Using typical carbon nitride synthesis conditions, cyanamide was condensed at 550 °C in the presence and absence of mac-SiO2. Condensation in the absence of mac-SiO2 results in materials with structural characteristics consistent with the carbon nitride, melon, accompanied by ca. 2 wt% carbonization. For mac-SiO2 supported materials, condensation occurs with greater carbonization (ca. 6 wt%). On addition of 3 wt% Pt cocatalyst photocatalytic hydrogen production under visible light is found to be up to 10 times greater for the supported composites. Time-resolved photoluminescence spectroscopy shows that excited state relaxation is more rapid for the mac-SiO2 supported materials suggesting faster electron-hole recombination and that supported carbon nitride does not exhibit improved charge separation. CO2 temperature programmed desorption indicates that enhanced photoactivity of supported carbon nitride is attributable to an increased surface area compared to bulk carbon nitride and an increase in the concentration of weakly basic catalytic sites, consistent with carbon nitride oligomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural dissolved organic matter (DOM) is the major absorber of sunlight in most natural waters and a critical component of carbon cycling in aquatic systems. The combined effect of light absorbance properties and related photo-production of reactive species are essential in determining the reactivity of DOM. Optical properties and in particular excitation–emission matrix fluorescence spectroscopy combined with parallel factor analysis (EEM-PARAFAC) have been used increasingly to track sources and fate of DOM. Here we describe studies conducted in water from two estuarine systems in the Florida Everglades, with a salinity gradient of 2 to 37 and dissolved organic carbon concentrations from 19.3 to 5.74 mg C L−1, aimed at assessing how the quantity and quality of DOM is coupled to the formation rates and steady-state concentrations of reactive species including singlet oxygen, hydroxyl radical, and the triplet excited state of DOM. These species were related to optical properties and PARAFAC components of the DOM. The formation rate and steady-state concentration of the carbonate radical was calculated in all samples. The data suggests that formation rates, particularly for singlet oxygen and hydroxyl radicals, are strongly coupled to the abundance of terrestrial humic-like substances. A decrease in singlet oxygen, hydroxyl radical, and carbonate radical formation rates and steady-state concentration along the estuarine salinity gradient was observed as the relative concentration of terrestrial humic-like DOM decreased due to mixing with microbial humic-like and protein-like DOM components, while the formation rate of triplet excited-state DOM did not change. Fluorescent DOM was also found to be more tightly coupled to reactive species generation than chromophoric DOM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nature is challenged to move charge efficiently over many length scales. From sub-nm to μm distances, electron-transfer proteins orchestrate energy conversion, storage, and release both inside and outside the cell. Uncovering the detailed mechanisms of biological electron-transfer reactions, which are often coupled to bond-breaking and bond-making events, is essential to designing durable, artificial energy conversion systems that mimic the specificity and efficiency of their natural counterparts. Here, we use theoretical modeling of long-distance charge hopping (Chapter 3), synthetic donor-bridge-acceptor molecules (Chapters 4, 5, and 6), and de novo protein design (Chapters 5 and 6) to investigate general principles that govern light-driven and electrochemically driven electron-transfer reactions in biology. We show that fast, μm-distance charge hopping along bacterial nanowires requires closely packed charge carriers with low reorganization energies (Chapter 3); singlet excited-state electronic polarization of supermolecular electron donors can attenuate intersystem crossing yields to lower-energy, oppositely polarized, donor triplet states (Chapter 4); the effective static dielectric constant of a small (~100 residue) de novo designed 4-helical protein bundle can change upon phototriggering an electron transfer event in the protein interior, providing a means to slow the charge-recombination reaction (Chapter 5); and a tightly-packed de novo designed 4-helix protein bundle can drastically alter charge-transfer driving forces of photo-induced amino acid radical formation in the bundle interior, effectively turning off a light-driven oxidation reaction that occurs in organic solvent (Chapter 6). This work leverages unique insights gleaned from proteins designed from scratch that bind synthetic donor-bridge-acceptor molecules that can also be studied in organic solvents, opening new avenues of exploration into the factors critical for protein control of charge flow in biology.