786 resultados para Graphite-epoxy composites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. To verify the hypothesis that crack analysis and a mechanical test would rank a series of composites in a similar order with respect to polymerization stress. Also, both tests would show similar relationships between stress and composite elastic modulus and/or shrinkage. Methods. Soda-lime glass discs (2-mm thick) with a central perforation (3.5-mm diameter) received four Vickers indentations 500 mu m from the cavity margin. The indent cracks were measured (500x) prior and 10 min after the cavity was restored with one of six materials (Kalore/KL, Gradia/GR, Ice/IC, Wave/WV, Majesty Flow/MF, and Majesty Posterior/MP). Stresses at the indent site were calculated based on glass fracture toughness and increase in crack length. Stress at the bonded interface was calculated using the equation for an internally pressurized cylinder. The mechanical test used a universal testing machine and glass rods (5-mm diameter) as substrate. An extensometer monitored specimen height (2 mm). Nominal stress was calculated dividing the maximum shrinkage force by the specimen cross-sectional area. Composite elastic modulus was determined by nanoindentation and post-gel shrinkage was measured using strain gages. Data were subjected to one-way ANOVA/Tukey or Kruskal-Wallis/Mann-Whitney tests (alpha: 5%). Results. Both tests grouped the composites in three statistical subsets, with small differences in overlapping between the intermediate subset (MF, WV) and the highest (MP, IC) or the lowest stress materials (KL, GR). Higher stresses were developed by composites with high modulus and/or high shrinkage. Significance. Crack analysis demonstrated to be as effective as the mechanical test to rank composites regarding polymerization stress. (c) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. To purpose a method for predicting the shrinkage stress development in the adhesive layer of resin-composite cylinders that shrink bonded to a single flat surface, by measuring the deflection of a glass coverslip caused by the shrinkage of the bonded cylinders. The correlation between the volume of the bonded resin-composite and the stress-peak was also investigated. Methods. A glass coverslip deflection caused by the shrinkage of a bonded resin-composite cylinder (diameter: d = 8 mm, 4 mm, or 2 mm, height: h = 4 mm, 2 mm, 1 mm, or 0.5 mm) was measured, and the same set-up was simulated by finite element analysis (3D-FEA). Stresses generated in the adhesive layer were plotted versus two geometric variables of the resin-composite cylinder (C-Factor and volume) to verify the existence of correlations between them and stresses. Results. The FEA models were validated. A significant correlation (p < 0.01, Pearson's test) between the stress-peak and the coverslip deflection when the resin-composites were grouped by diameter was found for diameters of 2 and 4 mm. The stress-peak of the whole set of data showed a logarithmic correlation with the bonded resin-composite volume (p < 0.001, Pearson's test), but did not correlate with the C-Factor. Significance. The described method should be considered for standardizing the stress generated by the shrinkage of resin-composite blocks bonded to a single flat surface. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this article is to present a method which consists in the development of unit cell numerical models for smart composite materials with piezoelectric fibers made of PZT embedded in a non-piezoelectric matrix (epoxy resin). This method evaluates a globally homogeneous medium equivalent to the original composite, using a representative volume element (RVE). The suitable boundary conditions allow the simulation of all modes of the overall deformation arising from any arbitrary combination of mechanical and electrical loading. In the first instance, the unit cell is applied to predict the effective material coefficients of the transversely isotropic piezoelectric composite with circular cross section fibers. The numerical results are compared to other methods reported in the literature and also to results previously published, in order to evaluate the method proposal. In the second step, the method is applied to calculate the equivalent properties for smart composite materials with square cross section fibers. Results of comparison between different combinations of circular and square fiber geometries, observing the influence of the boundary conditions and arrangements are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. Verify the influence of different filler distributions on the subcritical crack growth (SCG) susceptibility, Weibull parameters (m and sigma(0)) and longevity estimated by the strength-probability-time (SPT) diagram of experimental resin composites. Methods. Four composites were prepared, each one containing 59 vol% of glass powder with different filler sizes (d(50) = 0.5; 0.9; 1.2 and 1.9 mu m) and distributions. Granulometric analyses of glass powders were done by a laser diffraction particle size analyzer (Sald-7001, Shimadzu, USA). SCG parameters (n and sigma(f0)) were determined by dynamic fatigue (10(-2) to 10(2) MPa/s) using a biaxial flexural device (12 x 1.2 mm; n = 10). Twenty extra specimens of each composite were tested at 10(0) MPa/s to determine m and sigma(0). Specimens were stored in water at 37 degrees C for 24 h. Fracture surfaces were analyzed under SEM. Results. In general, the composites with broader filler distribution (C0.5 and C1.9) presented better results in terms of SCG susceptibility and longevity. C0.5 and C1.9 presented higher n values (respectively, 31.2 +/- 6.2(a) and 34.7 +/- 7.4(a)). C1.2 (166.42 +/- 0.01(a)) showed the highest and C0.5 (158.40 +/- 0.02(d)) the lowest sigma(f0) value (in MPa). Weibull parameters did not vary significantly (m: 6.6 to 10.6 and sigma(0): 170.6 to 176.4 MPa). Predicted reductions in failure stress (P-f = 5%) for a lifetime of 10 years were approximately 45% for C0.5 and C1.9 and 65% for C0.9 and C1.2. Crack propagation occurred through the polymeric matrix around the fillers and all the fracture surfaces showed brittle fracture features. Significance. Composites with broader granulometric distribution showed higher resistance to SCG and, consequently, higher longevity in vitro. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tannin-phenolic resin (40 wt% of tannin, characterized by H-1 nuclear magnetic resonance (NMR) and C-13 NMR, Fourier transform infrared, thermogravimetry, differential scanning calorimetry) was used to prepare composites reinforced with sisal fibers (30-70 wt%). Inverse gas chromatography results showed that the sisal fibers and the tannin-phenolic thermoset have close values of the dispersive component and also have predominance of acid sites (acid character) at the surface, confirming the favoring of interaction between the sisal fibers and the tannin-phenolic matrix at the interface. The Izod impact strength increased up to 50 wt% of sisal fibers. This composite also showed high storage modulus, and the lower loss modulus, confirming its good fiber/matrix interface, also observed by SEM images. A composite with good properties was prepared from high content of raw material obtained from renewable sources (40 wt% of tannin substituted the phenol in the preparation of the matrix and 50 wt% of matrix was replaced by sisal fibers). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoplastic starch (TPS) from industrial non-modified corn starch was obtained and reinforced with natural strands. The influence of the reinforcement on physical-chemical properties of the composites obtained by melt processing has been analyzed. For this purpose, composites reinforced with different amounts of either sisal or hemp strands have been prepared and evaluated in terms of crystallinity, water sorption, thermal and mechanical properties. The results showed that the incorporation of sisal or hemp strands caused an increase in the glass transition temperature (T-g) of the TPS as determined by DMTA. The reinforcement also increased the stiffness of the material, as reflected in both the storage modulus and the Young's modulus. Intrinsic mechanical properties of the reinforcing fibers showed a lower effect on the final mechanical properties of the materials than their homogeneity and distribution within the matrix. Additionally, the addition of a natural latex plasticizer to the composite decreased the water absorption kinetics without affecting significantly the thermal and mechanical properties of the material. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents the results of a combined experimental and theoretical study of fracture and resistance-curve behavior of hybrid natural fiber- and synthetic polymer fiber-reinforced composites that are being developed for potential applications in affordable housing. Fracture and resistance-curve behavior are studied using single-edge notched bend specimens. The sisal fibers used were examined using atomic force microscopy for fiber bundle structures. The underlying crack/microstructure interactions and fracture mechanisms are elucidated via in situ optical microscopy and ex-situ environmental scanning microscopy techniques. The observed crack bridging mechanisms are modeled using small and large scale bridging concepts. The implications of the results are then discussed for the design of eco-friendly building materials that are reinforced with natural and polypropylene fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim To compare the changes in the surface structure and elemental distribution, as well as the percentage of ion release, of four calcium silicate-containing endodontic materials with a well-established epoxy resin-based sealer, submitted to a solubility test. Methodology Solubility of AH Plus, iRoot SP, MTA Fillapex, Sealapex and MTA-Angelus (MTA-A) was tested according to ANSI/ADA Specification 57. The deionized water used in the solubility test was submitted to atomic absorption spectrophotometry to determine and quantify Ca2+, Na+, K+, Zn2+, Ni2+ and Pb2+ ions release. In addition, the outer and inner surfaces of nonsubmitted and submitted samples of each material to the solubility test were analysed by means of scanning electron microscopy and energy-dispersive spectroscopy (SEM/EDX). Statistical analysis was performed by using one-way anova and Tukeys post hoc tests (a = 0.05). Results Solubility results, in percentage, sorted in an increasing order were -1.24 +/- 0.19 (MTA-A), 0.28 +/- 0.08 (AH Plus), 5.65 +/- 0.80 (Sealapex), 14.89 +/- 0.73 (MTA Fillapex) and 20.64 +/- 1.42 (iRoot SP). AH Plus and MTA-A were statistically similar (P > 0.05), but different from the other materials (P < 0.05). High levels of Ca2+ ion release were observed in all groups except AH Plus sealer. MTA-A also had the highest release of Na2+ and K+ ions. Zn+2 ion release was observed only with AH Plus and Sealapex sealers. After the solubility test, all surfaces had morphological changes. The loss of matrix was evident and the filler particles were more distinguishable. EDX analysis displayed high levels of calcium and carbon at the surface of Sealapex, MTA Fillapex and iRoot SP. Conclusions AH Plus and MTA-A were in accordance with ANSI/ADAs requirements regarding solubility whilst iRoot SP, MTA Fillapex and Sealapex did not fulfil ANSI/ADAs protocols. High levels of Ca2+ ion release were observed in all materials except AH Plus. SEM/EDX analysis revealed that all samples had morphological changes in both outer and inner surfaces after the solubility test. High levels of calcium and carbon were also observed at the surface of all materials except AH Plus and MTA-A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Baldi JV, Bernardes RA, Duarte MAH, Ordinola-Zapata R, Cavenago BC, Moraes JCS, de Moraes IG. Variability of physicochemical properties of an epoxy resin sealer taken from different parts of the same tube. International Endodontic Journal,similar to 45, 915920, 2012. Abstract Aim To analyse several physicochemical properties of AH Plus (Dentsply DeTrey, Konstanz, Germany), including setting time, flow, radiopacity and the degree of conversion (DC); and to correlate the results with the source of the material: from the beginning, middle or end of the tubes in which they were supplied. Methodology Three experimental groups were established for each property investigated. Group 1 corresponded to material taken from the beginning of tubes A and B; Group 2 corresponded to material taken from the middle of each tube; and group 3 corresponded to that from the end of each tube. The setting time, flow and radiopacity were studied according to American National Standards Institute/American Dental Association (ANSI/ADA) Specification 57. DC was determined from infrared spectra, which were recorded at 1-h intervals for the first 6 h; then, at 2-h intervals for the next 14 h; then, at 24 and 30 h. Data were analysed statistically by analysis of variance (anova), TukeyKramer, KruskalWallis and Dunn tests, with a significance level of 5%. Results Group 1 had a significantly longer setting time (2303 +/- 1058 min) (P < 0.05). Group 3 had the lowest flowability (30.0 +/- 0.7 mm) and the highest radiopacity (14.85 +/- 1.8 mm Al) (P < 0.05). No differences were found for the DC test (P > 0.05). Conclusion The results suggest that segregation occurs between the organic and inorganic components of AH Plus sealer, thereby changing the setting time, flow and radiopacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecularly imprinted polymers (MIP's) have been applied in several areas of analytical chemistry, including the modification of electrodes. The main purpose of such modification is improving selectivity; however, a gain in sensitivity was also observed in many cases. The most frequent approaches for these modifications are the electrodeposition of polymer films and sol gel deposits, spin and drop coating and self-assembling of films on metal nanoparticles. The preparation of bulk (body) modified composites as carbon pastes and polymer agglutinated graphite have also been investigated. In all cases several analytes including pharmaceuticals, pesticides, and inorganic species, as well as molecules with biological relevance have been successfully used as templates and analyzed with such devices in electroanalytical procedures. Herein, 65 references are presented concerning the general characteristics and some details related to the preparation of MIP's including a description of electrodes modified with MIP's by different approaches. The results using voltammetric and amperometric detection are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper evaluates the photopolymerization kinetics and degree of conversion of different commercial dental composites when photoactivated by a LED curing unit using two different modes (standard and soft-start mode). The investigation was performed on with RelyX ARC (dual-cured), Filtek Z-350 (Nanocomposite), Filtek Z-250 (Hybrid), and Filtek Z-350flow (Flowable) resin composites. The analysis used was attenuated total reflection with a Fourier transform infrared (ATR-FTIR). The RelyX ARC resin demonstrated the highest degree of conversion with both LED photoactivation modes. For this resin a 28% decrease in maximum rate was observed and the time to reach its highest rate was almost 2.3 times higher than when the soft-start photoactivation light curing was used. Z-350flow resin recorder a higher maximum rate using the soft-start mode rather than the standard mode. In contrast, the Z-250 showed a higher value using the standard mode. Although Z-250 and Z-350 showed a higher total degree of conversion effectiveness using the soft-start mode, RelyX and Z-350flow achieved a higher value using the standard mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites of high-density biopolyethylene (HDBPE) obtained from ethylene derived from sugarcane ethanol and curaua fibers were formed by first mixing in an internal mixer followed by thermopressing. Additionally, hydroxyl-terminated polybutadiene (LHPB), which is usually used as an impact modifier, was mainly used in this study as a compatibilizer agent. The fibers, HDBPE and LHPB were also compounded using an inter-meshing twin-screw extruder and, subsequently, injection molded. The presence of the curaua fibers enhanced some of the properties of the HDBPE, such as its flexural strength and storage modulus. SEM images showed that the addition of LHPB improved the adhesion of the fiber/matrix at the interface, which increased the impact strength of the composite. The higher shear experienced during processing probably led to a more homogeneous distribution of fibers, making the composite that was prepared through extruder/injection molding more resistant to impact than the composite processed by the internal mixer/thermopressing. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and characterization of graphite oxide (GO), graphene (GS), and the composites: GS-CeO2 and GO-CeO2 are reported. This synthesis was carried out by mixing aqueous solutions of CeCl3 center dot 7H(2)O and GO, which yields the oxidized composite GO-CeO2. GO-CeO2 was hydrothermally reduced with ethylene glycol, at 120 A degrees C, yielding the reduced composite GS-CeO2. GO, GS ,and the composites with CeO2 were characterized by CHN, TG/DTG, BET, XRD, SEM microscopy, FTIR, and Raman spectroscopy. The estimation of crystallite size of CeO2 anchored on GO and on GS by Raman, XRD, and SEM agreed very well showing diameters about 5 nm. The role of particles of CeO2 coating carbon sheets of GO and GS was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites formed of a polymer-embedded layer of sub-10 nm gold nanoclusters were fabricated by very low energy (49 eV) gold ion implantation into polymethylmethacrylate. We used small angle x-ray scattering to investigate the structural properties of these metal-polymer composite layers that were fabricated at three different ion doses, both in their original form (as-implanted) and after annealing for 6 h well above the polymer glass transition temperature (150 degrees C). We show that annealing provides a simple means for modification of the structure of the composite by coarsening mechanisms, and thereby changes its properties. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4720464]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determination of chlorine using the molecular absorption of aluminum mono-chloride (AlCl) at the 261.418 nm wavelength was accomplished by high-resolution continuum source molecular absorption spectrometry using a transversely heated graphite tube furnace with an integrated platform. For the analysis. 10 mu L of the sample followed by 10 mu L of a solution containing Al-Ag-Sr modifier, (1 g L-1 each), were directly injected onto the platform. A spectral interference due to the use of Al-Ag-Sr as mixed modifier was easily corrected by the least-squares algorithm present in the spectrometer software. The pyrolysis and vaporization temperatures were 500 degrees C and 2200 degrees C, respectively. To evaluate the feasibility of a simple procedure for the determination of chlorine in food samples present in our daily lives, two different digestion methods were applied, namely (A) an acid digestion method using HNO3 only at room temperature, and (B) a digestion method with Ag, HNO3 and H2O2, where chlorine is precipitated as a low-solubility salt (AgCl), which is then dissolved with ammonia solution. The experimental results obtained with method B were in good agreement with the certified values and demonstrated that the proposed method is more accurate than method A. This is because the formation of silver chloride prevented analyte losses by volatilization. The limit of detection (LOD, 3 sigma/s) for Cl in methods A and B was 18 mu g g(-1) and 9 mu g g(-1), respectively, 1.7 and 3.3 times lower compared to published work using inductively coupled plasma optical emission spectrometry, and absolute LODs were 2.4 and 1.2 ng, respectively. (C) 2012 Elsevier B.V. All rights reserved.