872 resultados para Garbage and Recycling Behavior
Resumo:
This study systematically investigates the phenomenon of internal clamping in ferroelectric materials through the formation of glass-ceramic composites. Lead-free 0.715Bi(0.5)Na(0.5)TiO(3)-0.065BaTiO(3)-0.22SrTiO(3) (BNT-BT-ST) bulk ferroelectric ceramic was selected for the course of investigation. 3BaO - 3TiO(2) - B2O3 (BTBO) glass was then incorporated systematically to create sintered samples containing 0%, 2%, 4% and 6% glass (by weight). Upon glass induction features like remnant polarization, saturation polarization, hysteresis losses and coercive field could be varied as a function of glass content. Such effects were observed to benefit derived applications like enhanced energy storage density similar to 174 k J/m(3) to similar to 203 k J/m(3) and pyroelectric coefficient 5.7x10(-4) Cm-2K-1 to 6.8x10(-4) Cm-2K-1 by incorporation of 4% glass. Additionally, BNT-BT-ST depolarization temperature decreased from 457K to 431K by addition of 4% glass content. Glass incorporation could systematically increases diffuse phase transition and relaxor behavior temperature range from 70 K to 81K and 20K to 34 K, respectively when 6% and 4% glass content is added which indicates addition of glass provides better temperature stability. The most promising feature was observed to be that of dielectric response tuning. It can be also used to control (to an extent) the dielectric behavior of the host ceramic. Dielectric permittivity and losses decreased from 1278 to 705 and 0.109 to 0.107 for 6% glass, at room temperature. However this reduction in dielectric constant and loss increases pyroelectric figures of merit (FOMs) for high voltage responsivity (F-v) high detectivity (F-d) and energy harvesting (F-e) from 0.018 to 0.037 m(2)C(-1), 5.89 to 8.85 mu Pa-1/2 and 28.71 to 61.55 Jm(-3)K(-2), respectively for 4% added ceramic-glass at room temperature. Such findings can have huge implications in the field of tailoring ferroelectric response for application specific requirements. (C) 2015 Author(s).
Resumo:
Classical models are not successful in describing discharge characteristics of a lead-acid battery when the current density is varied over a wide range. A model is developed in this work to overcome this lacuna by introducing into the standard models two mechanisms that have not been used earlier. Lead sulfate particles nucleate and grow on active materials of electrodes during discharge, resulting in coverage of active area. Increasing rate of discharge builds supersaturation of lead sulfate rapidly, and causes increased extents of nucleation and coverage. Electrodes behave almost like an insulator due to deposition of lead sulfate when active materials are converted to a critical extent, and this can stop discharge process. Influence of this mechanism is also rate dependent. The new model developed is tested against data on polarization behavior, and capacity drawn as a function of current. The model successfully predicts both polarization curves and Peukert behavior. The model is used to predict charge that can be drawn at a current after partial discharge at a different current. Model suggests that altering nucleation behavior can be useful in enhancing capacity available for discharge. (C) 2015 The Electrochemical Society.
Resumo:
High pressure Raman spectroscopic studies on perfluorohexane and perfluoroheptane have performed up to 12 GPa. Perfluorohexane under goes two pressure induced transitions: (1) liquid-solid transition at 1.6 GPa and (2) solid-solid transition at 8.2 GPa. On the contrary, perfluoroheptane under goes three phase transitions, they are as follows: (1) liquid-solid transition at 1.3 GPa, (2) intermediate solid I transition at 3 GPa, (3) solid II transition at 7 GPa. The change in slope (d omega/dP) shows that the solid I transition at 3.0 GPa could be the conversion of mid-gauche defect into trans conformers for perfluoroheptane. The pressure induced Raman spectra and the behavior of individual band with pressure shows that the solid phase comprises more than one conformer beyond crystallization. The intensity ratio for both the compounds shows that the high pressure phase beyond 8.2 and 7.0 GPa tends to have close packing with distorted all-trans conformers. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this paper, for the first time, the key design parameters of a shallow trench isolation-based drain-extended MOS transistor are discussed for RF power applications in advanced CMOS technologies. The tradeoff between various dc and RF figures of merit (FoMs) is carefully studied using well-calibrated TCAD simulations. This detailed physical insight is used to optimize the dc and RF behavior, and our work also provides a design window for the improvement of dc as well as RF FoMs, without affecting the breakdown voltage. An improvement of 50% in R-ON and 45% in RF gain is achieved at 1 GHz. Large-signal time-domain analysis is done to explore the output power capability of the device.
Resumo:
During service and/or storage, Sn-Ag-Cu (SAC) solder alloys are subjected to temperatures ranging from 0.4 to 0.8 Tm (where Tm is the melting temperature of SAC alloys), making them highly prone to significant microstructural coarsening. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long-term reliability of microelectronic packages. Here, we study microstructure evolution and creep behavior of two Sn-Ag-Cu (SAC) alloys, namely Sn-3.0Ag-0.5Cu and Sn-1.0Cu-0.5Cu, isothermally aged at 150 degrees C for various lengths of time. Creep behavior of the two SAC solders after different aging durations was systematically studied using impression creep technique. The key microstructural features that evolve during aging are Ag3Sn particle size and inter-particle spacing. Creep results indicate that the creep rate increases considerably with increasing inter-particle spacing although the creep stress exponent and creep activation energy are independent of the aging history.
Resumo:
Neuronal communication relies on synaptic vesicles undergoing regulated exocytosis and recycling for multiple rounds of fusion. Whether all synaptic vesicles have identical protein content has been challenged, suggesting that their recycling ability may differ greatly. Botulinum neurotoxin type-A (BoNT/A) is a highly potent neurotoxin that is internalized in synaptic vesicles at motor nerve terminals and induces flaccid paralysis. Recently, BoNT/A was also shown to undergo retrograde transport, suggesting it might enter a specific pool of synaptic vesicles with a retrograde trafficking fate. Using high-resolution microscopy techniques including electron microscopy and single molecule imaging, we found that the BoNT/A binding domain is internalized within a subset of vesicles that only partially co-localize with cholera toxin B-subunit and have markedly reduced VAMP2 immunoreactivity. Synaptic vesicles loaded with pHrodo-BoNT/A-Hc exhibited a significantly reduced ability to fuse with the plasma membrane in mouse hippocampal nerve terminals when compared with pHrodo-dextran-containing synaptic vesicles and pHrodo-labeled anti-GFP nanobodies bound to VAMP2-pHluorin or vGlut-pHluorin. Similar results were also obtained at the amphibian neuromuscular junction. These results reveal that BoNT/A is internalized in a subpopulation of synaptic vesicles that are not destined to recycle, highlighting the existence of significant molecular and functional heterogeneity between synaptic vesicles.
Resumo:
Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (<70% by volume) is shown by using an appropriate time scale obtained from force balance. Continuous caving leads to the formation of a liquid membrane-type structure which undergoes radial extension due to inertia gained during the precursor phase. The membrane subsequently closes at the rim and the kinetic energy leads to ligament formation and growth. Subsequent ligament breakup is primarily Rayleigh-Plateau type. The breakup mode shifts to diffusional entrapment-induced boiling with an increase in concentration of the volatile component (benzene >70% by volume). The findings are portable to any similar bicomponent systems with differential volatility.
Resumo:
In order to understand the dynamic behavior of submarine pipelines exposed to current and the mechanism of the interaction between current-induced vibration and scour of pipelines on a sandy bottom, an experimental investigation is conducted with a small scale model A test model which can be tested in the flume is set up by taking into account the typical working conditions of the pipelines and by applying the similarity theory. The interactions between the shape of the scour hole and the behavior of the pipeline as well as the flow patterns of the current are detailed, and the interaction mechanism outlined. The effect of vibration of the pipeline on the development of dynamic scour at different stages is found out. The proposed experimental method and test results provide an effective means for design of marine pipelines against scouring.
Resumo:
Viscoelastic deformation and creep behavior of La- and Ce-based bulk metallic glasses (BMGs) with low glass transition temperature are investigated through nanoindentation at room temperature. Creep compliance and retardation spectra are derived to study the creep mechanism. The time-dependent displacement can be well described by a generalized Kelvin model. A modification is proposed to determine the elastic modulus from the generalized Kelvin model. The results are in excellent agreement with the elastic modulus determined by uniaxial compression tests. (c) 2007 Published by Elsevier B.V.
Resumo:
We present the analysis of uniaxial deformation of nickel nanowires using molecular dynamics simulations, and address the strain rate effects on mechanical responses and deformation behavior. The applied strain rate is ranging from 1 x 10(8) s(-1) to 1.4 x 10(11) s(-1). The results show that two critical strain rates, i.e., 5 x 10(9) s(-1) and 8 x 10(10) s(-1), are observed to play a pivotal role in switching between plastic deformation modes. At strain rate below 5 x 10(9) s(-1), Ni nanowire maintains its crystalline structure with neck occurring at the end of loading, and the plastic deformation is characterized by {111} slippages associated with Shockley partial dislocations and rearrangements of atoms close to necking region. At strain rate above 8x10(10) s(-1), Ni nanowire transforms from a fcc crystal into a completely amorphous state once beyond the yield point, and hereafter it deforms uniformly without obvious necking until the end of simulation. For strain rate between 5 x 10(9) s(-1) and 8 x 10(10) s(-1), only part of the nanowire exhibits amorphous state after yielding while the other part remains crystalline state. Both the {111} slippages in ordered region and homogenous deformation in amorphous region contribute to the plastic deformation. (C) 2007 Published by Elsevier B.V.
Resumo:
A transmission electron microscopy (TEM) study has been carried out to uncover how dislocations and twins accommodate large plastic strains and accumulate in very small nanocrystalline Ni grains during low-temperature deformation. We illustrate dislocation patterns that suggest preferential deformation and nonuniform defect storage inside the nanocrystalline grain. Dislocations are present in individual and dipole configurations. Most dislocations are of the 60 degrees type and pile up on (111) slip planes. Various deformation responses, in the forms of dislocations and twinning, may simultaneously occur inside a nanocrystalline grain. Evidence for twin boundary migration has been obtained. The rearrangement and organization of dislocations, sometimes interacting with the twins, lead to the formation of subgrain boundaries, subdividing the nanograin into mosaic domain structures. The observation of strain (deformation)-induced refinement contrasts with the recently reported stress-assisted grain growth in nanocrystalline metals and has implications for understanding the stability and deformation behavior of these highly nonequilibrium materials.
Resumo:
The shear strength of soils or rocks developed in a landslide usually exhibits anisotropic and nonlinear behavior. The process of sedimentation and subsequent consolidation can cause anisotropy of sedimentary soils or rocks, for instance. Nonlinearity of failure envelope could be attributed to "interlocking" or "dilatancy" of the material, which is generally dependent upon the stress level. An analytical method considering both anisotropy and nonlinearity of the failure envelops of soil and rocks is presented in the paper. The nonlinearfailure envelopes can be determined from routine triaxial tests. A spreadsheet program, which uses the Janbu's Generalized Procedure of Slice and incorporates anisotropic, illustrates the implementation of the approach and nonlinearfailure envelops. In the analysis, an equivalent Mohr-Coulomb linear failure criterion is obtained by drawing a tangent to the nonlinear envelope of an anisotropic soil at an appropriate stress level. An illustrative example is presented to show the feasibility and numerical efficiency of the method.
Resumo:
Very-High-Cycle Fatigue (VHCF) test for a medium carbon structural steel (40Cr) has been performed and a stepwise S-N curve was obtained by employing cantilever-type rotary bending fatigue machine with hourglass shape specimen. The S-N curve was well explained as a combination of curves for surface-induced fracture and interior inclusion-induced fracture with fish-eye patterns. The morphology of the fish-eye pattern was illustrated in order to clarify subsurface crack initiation and propagation behavior.
Resumo:
In this paper, torsion fracture behavior of drawn pearlitic steel wires with different heat treatments was investigated. Samples with different heat treatments was investigated. Samples with different heat treatment conditions were subjected to torsion and tensile tests. The shear strain along the torsion sample after fracture was measured. Fracture surface of wires was examined by Scanning Electron Microscopy. In addition, the method of Differential Scanning Calorimetry was used to characterize the thermodynamic process in the heat treatment. A numerical simulation via finite element method on temperature field evolution for the wire during heat treatment process was performed. The results show that both strain aging and recovery process occur in the material within the temperature range between room temperature and 435 degrees C. It was shown that the ductility measured by the number of twists drops at short heating times and recovers after further heating in the lead bath of 435 degrees C. On the other hand, the strenght of the wire increases at short heating times and decreases after further heating. The microstructure inhomogeneity due to short period of heat treatment, coupled with the gradient characteristics of shear deformation during torsion results in localized shear deformation of the wire. In this situation, shear cracks nucleate between lamella and the wire breaks with low number of twists.
Resumo:
The mechanical behaviors of the ceramic particle-reinforced metal matrix composites are modeled based on the conventional theory of mechanism-based strain gradient plasticity presented by Huang et al. Two cases of interface features with and without the effects of interface cracking will be analyzed, respectively. Through comparing the result based on the interface cracking model with experimental result, the effectiveness of the present model can be evaluated. Simultaneously, the length parameters included in the strain gradient plasticity theory can be obtained.