928 resultados para Discrete-time control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Timeliness guarantee is an important feature of the recently standardized IEEE 802.15.4 protocol, turning it quite appealing for Wireless Sensor Network (WSN) applications under timing constraints. When operating in beacon-enabled mode, this protocol allows nodes with real-time requirements to allocate Guaranteed Time Slots (GTS) in the contention-free period. The protocol natively supports explicit GTS allocation, i.e. a node allocates a number of time slots in each superframe for exclusive use. The limitation of this explicit GTS allocation is that GTS resources may quickly disappear, since a maximum of seven GTSs can be allocated in each superframe, preventing other nodes to benefit from guaranteed service. Moreover, the GTS may be underutilized, resulting in wasted bandwidth. To overcome these limitations, this paper proposes i-GAME, an implicit GTS Allocation Mechanism in beacon-enabled IEEE 802.15.4 networks. The allocation is based on implicit GTS allocation requests, taking into account the traffic specifications and the delay requirements of the flows. The i-GAME approach enables the use of one GTS by multiple nodes, still guaranteeing that all their (delay, bandwidth) requirements are satisfied. For that purpose, we propose an admission control algorithm that enables to decide whether to accept a new GTS allocation request or not, based not only on the remaining time slots, but also on the traffic specifications of the flows, their delay requirements and the available bandwidth resources. We show that our approach improves the bandwidth utilization as compared to the native explicit allocation mechanism defined in the IEEE 802.15.4 standard. We also present some practical considerations for the implementation of i-GAME, ensuring backward compatibility with the IEEE 801.5.4 standard with only minor add-ons. Finally, an experimental evaluation on a real system that validates our theoretical analysis and demonstrates the implementation of i-GAME is also presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The availability of small inexpensive sensor elements enables the employment of large wired or wireless sensor networks for feeding control systems. Unfortunately, the need to transmit a large number of sensor measurements over a network negatively affects the timing parameters of the control loop. This paper presents a solution to this problem by representing sensor measurements with an approximate representation-an interpolation of sensor measurements as a function of space coordinates. A priority-based medium access control (MAC) protocol is used to select the sensor messages with high information content. Thus, the information from a large number of sensor measurements is conveyed within a few messages. This approach greatly reduces the time for obtaining a snapshot of the environment state and therefore supports the real-time requirements of feedback control loops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The IEEE 802.15.4 is the most widespread used protocol for Wireless Sensor Networks (WSNs) and it is being used as a baseline for several higher layer protocols such as ZigBee, 6LoWPAN or WirelessHART. Its MAC (Medium Access Control) supports both contention-free (CFP, based on the reservation of guaranteed time-slots GTS) and contention based (CAP, ruled by CSMA/CA) access, when operating in beacon-enabled mode. Thus, it enables the differentiation between real-time and best-effort traffic. However, some WSN applications and higher layer protocols may strongly benefit from the possibility of supporting more traffic classes. This happens, for instance, for dense WSNs used in time-sensitive industrial applications. In this context, we propose to differentiate traffic classes within the CAP, enabling lower transmission delays and higher success probability to timecritical messages, such as for event detection, GTS reservation and network management. Building upon a previously proposed methodology (TRADIF), in this paper we outline its implementation and experimental validation over a real-time operating system. Importantly, TRADIF is fully backward compatible with the IEEE 802.15.4 standard, enabling to create different traffic classes just by tuning some MAC parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) are highly distributed systems in which resource allocation (bandwidth, memory) must be performed efficiently to provide a minimum acceptable Quality of Service (QoS) to the regions where critical events occur. In fact, if resources are statically assigned independently from the location and instant of the events, these resources will definitely be misused. In other words, it is more efficient to dynamically grant more resources to sensor nodes affected by critical events, thus providing better network resource management and reducing endto- end delays of event notification and tracking. In this paper, we discuss the use of a WSN management architecture based on the active network management paradigm to provide the real-time tracking and reporting of dynamic events while ensuring efficient resource utilization. The active network management paradigm allows packets to transport not only data, but also program scripts that will be executed in the nodes to dynamically modify the operation of the network. This presumes the use of a runtime execution environment (middleware) in each node to interpret the script. We consider hierarchical (e.g. cluster-tree, two-tiered architecture) WSN topologies since they have been used to improve the timing performance of WSNs as they support deterministic medium access control protocols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A MATLAB/SIMULINK-based simulator was employed for studies concerning the control of baker’s yeast fed-batch fermentation. Four control algorithms were implemented and compared: the classical PID control, two discrete versions- modified velocity and position algorithms, and a fuzzy law. The simulation package was seen to be an efficient tool for the simulation and tests of control strategies of the nonlinear process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamical systems theory is used here as a theoretical language and tool to design a distributed control architecture for a team of two mobile robots that must transport a long object and simultaneously avoid obstacles. In this approach the level of modeling is at the level of behaviors. A “dynamics” of behavior is defined over a state space of behavioral variables (heading direction and path velocity). The environment is also modeled in these terms by representing task constraints as attractors (i.e. asymptotically stable states) or reppelers (i.e. unstable states) of behavioral dynamics. For each robot attractors and repellers are combined into a vector field that governs the behavior. The resulting dynamical systems that generate the behavior of the robots may be nonlinear. By design the systems are tuned so that the behavioral variables are always very close to one attractor. Thus the behavior of each robot is controled by a time series of asymptotically stable states. Computer simulations support the validity of our dynamic model architectures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Admission controllers are used to prevent overload in systems with dynamically arriving tasks. Typically, these admission controllers are based on suÆcient (but not necessary) capacity bounds in order to maintain a low computational complexity. In this paper we present how exact admission-control for aperiodic tasks can be eÆciently obtained. Our rst result is an admission controller for purely aperiodic task sets where the test has the same runtime complexity as utilization-based tests. Our second result is an extension of the previous controller for a baseload of periodic tasks. The runtime complexity of this test is lower than for any known exact admission-controller. In addition to presenting our main algorithm and evaluating its performance, we also discuss some general issues concerning admission controllers and their implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-time scheduling usually considers worst-case values for the parameters of task (or message stream) sets, in order to provide safe schedulability tests for hard real-time systems. However, worst-case conditions introduce a level of pessimism that is often inadequate for a certain class of (soft) real-time systems. In this paper we provide an approach for computing the stochastic response time of tasks where tasks have inter-arrival times described by discrete probabilistic distribution functions, instead of minimum inter-arrival (MIT) values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To evaluate factors associated with users’ satisfaction in the Tuberculosis Control Program. METHODS A cross-sectional study of 295 patients aged ≥ 18 years, with two or more outpatient visits in the Tuberculosis Control Program, in five cities in the metropolitan region of Rio de Janeiro, RJ, Southeastern Brazil, in 2010. Considering an estimated population of 4,345 patients, the sampling plan included 15 health care units participating in the program, divided into two strata: units in Rio de Janeiro City, selected with probability proportional to the monthly average number of outpatient visits, and units in the other four cities. In the units, four temporal clusters of five patients each were selected with equal probability, totaling 300 patients. A questionnaire investigating the users’ clinical and sociodemographic variables and aspects of care and service in the program relevant to user satisfaction was applied to the patients. Descriptive statistics about users and their satisfaction with the program were obtained, and the effects of factors associated with satisfaction were estimated. RESULTS Patients were predominantly males (57.7%), with a mean age of 40.9 and with low level of schooling. The mean treatment time was 4.1 months, mostly self-administered (70.4%). Additionally, 25.8% had previously been treated for tuberculosis. There was a high level of satisfaction, especially regarding medication provision, and respect to patients by the health professionals. Patients who were younger (≤ 30), those on self-administered treatment, and with graduate level, showed less satisfaction. Suggestions to improve the services include having more doctors (70.0%), and offering exams in the same place of attendance (55.1%). CONCLUSIONS Patient satisfaction with the Tuberculosis Control Program was generally high, although lower among younger patients, those with university education and those on self-administered treatment. The study indicates the need for changes to structural and organizational aspects of care, and provides practical support for its improvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In beacon-enabled mode, IEEE 802.15.4 is ruled by the slotted CSMA/CA Medium Access Control (MAC) protocol. The standard slotted CSMA/CA mechanism does not provide any means of differentiated services to improve the quality of service for timecritical events (such as alarms, time slot reservation, PAN management messages etc.). In this paper, we present and discuss practical service differentiation mechanisms to improve the performance of slotted CSMA/CA for time-critical events, with only minor add-ons to the protocol. The contribution of our proposal is more practical than theoretical since our initial requirement is to leave the original algorithm of the slotted CSMA/CA unchanged, but rather tuning its parameters adequately according to the criticality of the messages. We present a simulation study based on an accurate model of the IEEE 802.15.4 MAC protocol, to evaluate the differentiated service strategies. Four scenarios with different settings of the slotted CSMA/CA parameters are defined. Each scenario is evaluated for FIFO and Priority Queuing. The impact of the hiddennode problem is also analyzed, and a solution to mitigate it is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The IEEE 802.15.4 Medium Access Control (MAC) protocol is an enabling technology for time sensitive wireless sensor networks thanks to its Guaranteed-Time Slot (GTS) mechanism in the beacon-enabled mode. However, the protocol only supports explicit GTS allocation, i.e. a node allocates a number of time slots in each superframe for exclusive use. The limitation of this explicit GTS allocation is that GTS resources may quickly disappear, since a maximum of seven GTSs can be allocated in each superframe, preventing other nodes to benefit from guaranteed service. Moreover, the GTSs may be only partially used, resulting in wasted bandwidth. To overcome these limitations, this paper proposes i-GAME, an implicit GTS Allocation Mechanism in beacon-enabled IEEE 802.15.4 networks. The allocation is based on implicit GTS allocation requests, taking into account the traffic specifications and the delay requirements of the flows. The i-GAME approach enables the use of a GTS by multiple nodes, while all their (delay, bandwidth) requirements are still satisfied. For that purpose, we propose an admission control algorithm that enables to decide whether to accept a new GTS allocation request or not, based not only on the remaining time slots, but also on the traffic specifications of the flows, their delay requirements and the available bandwidth resources. We show that our proposal improves the bandwidth utilization compared to the explicit allocation used in the IEEE 802.15.4 protocol standard. We also present some practical considerations for the implementation of i-GAME, ensuring backward compatibility with the IEEE 801.5.4 standard with only minor add-ons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a collision-free medium access control (MAC) protocol, which implements static-priority scheduling and works in the presence of hidden nodes. The MAC protocol allows multiple masters and is fully distributed; it is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But unlike that protocol, our protocol does not require a node having the ability to sense the channel while transmitting to the channel. Our protocol is collision-free even in the presence of hidden nodes and it achieves this without synchronized clocks or out-of-band busy tones. In addition, the protocol is designed to ensure that many non-interfering nodes can transmit in parallel and it functions for both broadcast and unicast transmissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dragonflies demonstrate unique and superior flight performances than most of the other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, the dynamics of a dragonfly-inspired robot is studied. The system performance is analyzed in terms of time response and robustness. The development of computational simulation based on the dynamics of the robotic dragonfly allows the test of different control algorithms. We study different movements, the dynamics, and the level of dexterity in wing motion of the dragonfly. The results are positive for the construction of flying platforms that effectively mimic the kinematics and dynamics of dragonflies and potentially exhibit superior flight performance than existing flying platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the use of multidimensional scaling in the evaluation of controller performance. Several nonlinear systems are analyzed based on the closed loop time response under the action of a reference step input signal. Three alternative performance indices, based on the time response, Fourier analysis, and mutual information, are tested. The numerical experiments demonstrate the feasibility of the proposed methodology and motivate its extension for other performance measures and new classes of nonlinearities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, it is studied the dynamics of the robotic bird in terms of time response and robustness. It is analyzed the wing angle of attack and the velocity of the bird, the tail influence, the gliding flight and the flapping flight. The results are positive for the construction of flying robots. The development of computational simulation based on the dynamic of the robotic bird should allow testing strategies and different algorithms of control such as integer and fractional controllers.