802 resultados para Data-driven Methods


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Physiological signals, which are controlled by the autonomic nervous system (ANS), could be used to detect the affective state of computer users and therefore find applications in medicine and engineering. The Pupil Diameter (PD) seems to provide a strong indication of the affective state, as found by previous research, but it has not been investigated fully yet. ^ In this study, new approaches based on monitoring and processing the PD signal for off-line and on-line affective assessment ("relaxation" vs. "stress") are proposed. Wavelet denoising and Kalman filtering methods are first used to remove abrupt changes in the raw Pupil Diameter (PD) signal. Then three features (PDmean, PDmax and PDWalsh) are extracted from the preprocessed PD signal for the affective state classification. In order to select more relevant and reliable physiological data for further analysis, two types of data selection methods are applied, which are based on the paired t-test and subject self-evaluation, respectively. In addition, five different kinds of the classifiers are implemented on the selected data, which achieve average accuracies up to 86.43% and 87.20%, respectively. Finally, the receiver operating characteristic (ROC) curve is utilized to investigate the discriminating potential of each individual feature by evaluation of the area under the ROC curve, which reaches values above 0.90. ^ For the on-line affective assessment, a hard threshold is implemented first in order to remove the eye blinks from the PD signal and then a moving average window is utilized to obtain the representative value PDr for every one-second time interval of PD. There are three main steps for the on-line affective assessment algorithm, which are preparation, feature-based decision voting and affective determination. The final results show that the accuracies are 72.30% and 73.55% for the data subsets, which were respectively chosen using two types of data selection methods (paired t-test and subject self-evaluation). ^ In order to further analyze the efficiency of affective recognition through the PD signal, the Galvanic Skin Response (GSR) was also monitored and processed. The highest affective assessment classification rate obtained from GSR processing is only 63.57% (based on the off-line processing algorithm). The overall results confirm that the PD signal should be considered as one of the most powerful physiological signals to involve in future automated real-time affective recognition systems, especially for detecting the "relaxation" vs. "stress" states.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to define and describe a Developmental Education Program Model for high-risk minority baccalaureate nursing students based upon perceived needs determined by nursing students and nursing faculty. The research examined differences between Black and Non-Black nursing students in level of importance of concerns and issues related to academic, financial, psycho-social and personal areas of student life; faculty perceptions of the differences between Black and Non-Black nursing students in the level of importance of concerns and issues related to academic, financial, psycho-social and personal areas of student life; and the difference between Black and Non-Black nursing faculty perceptions of level of importance of issues and concerns of academic, financial, psycho-social, and personal areas for Black nursing students. In this study two data collection methods were used, questionnaire and interview. The questionnaire was completed by all students and faculty. Black baccalaureate nursing students and nursing faculty were interviewed. The most significant differences were seen in the category of Personal Issues. Student identified concerns and issues related to both academic and health problems. Faculty identified the greatest differences in Academic Issues. The framework for the model which evolved out of the data uses needs from: (1) a whole person perspective (outcome oriented needs); (2) a programmatic perspective (input oriented needs); and (3) learning domain perspective (process oriented needs). ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern IT infrastructures are constructed by large scale computing systems and administered by IT service providers. Manually maintaining such large computing systems is costly and inefficient. Service providers often seek automatic or semi-automatic methodologies of detecting and resolving system issues to improve their service quality and efficiency. This dissertation investigates several data-driven approaches for assisting service providers in achieving this goal. The detailed problems studied by these approaches can be categorized into the three aspects in the service workflow: 1) preprocessing raw textual system logs to structural events; 2) refining monitoring configurations for eliminating false positives and false negatives; 3) improving the efficiency of system diagnosis on detected alerts. Solving these problems usually requires a huge amount of domain knowledge about the particular computing systems. The approaches investigated by this dissertation are developed based on event mining algorithms, which are able to automatically derive part of that knowledge from the historical system logs, events and tickets. ^ In particular, two textual clustering algorithms are developed for converting raw textual logs into system events. For refining the monitoring configuration, a rule based alert prediction algorithm is proposed for eliminating false alerts (false positives) without losing any real alert and a textual classification method is applied to identify the missing alerts (false negatives) from manual incident tickets. For system diagnosis, this dissertation presents an efficient algorithm for discovering the temporal dependencies between system events with corresponding time lags, which can help the administrators to determine the redundancies of deployed monitoring situations and dependencies of system components. To improve the efficiency of incident ticket resolving, several KNN-based algorithms that recommend relevant historical tickets with resolutions for incoming tickets are investigated. Finally, this dissertation offers a novel algorithm for searching similar textual event segments over large system logs that assists administrators to locate similar system behaviors in the logs. Extensive empirical evaluation on system logs, events and tickets from real IT infrastructures demonstrates the effectiveness and efficiency of the proposed approaches.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study analyzes the process of generation and management of solid waste in the Municipality of the City of Chibuto-Mozambique, drawing on the different approaches towards allocation and the socio-environmental implications resulting from this process and waste spatial distribution. To answer these objectives a questionnaire was administered to 367 households distributed in 14 neighborhoods of the city to elicit information on how solid waste is treated and what could be its impact on public health of the residents. From this perspective, the questionnaire gasp information from immigrant residents regarding both their origin, and socio economic condition. Apart from the questionnaire, semi-structured interviews were conducted to staff working on the Sanitation Sector, Urbanization Sector of the Chibuto Municipality, including the Health Service, and Women and Social Affairs. In addition to these data collection methods, for further discussion on the subject, the researcher draw a theoretical framework grounded through literature review, as well as systematic observation of the phenomenon. Research findings revealed that the solid waste collection services provided by the Chibuto Municipality do not follow the procedures laid down in the Regulation on Solid Waste Management, which advocates environmentally safe, sustainable, and complete management of waste. First, the services use open dumps for waste management. Secondly, waste collection does not cover all citizens living in the neighborhoods governed by the municipality, due to financial, technical, and organizational reasons. More importantly, the study found that due to this failure, more than 90% of households surveyed continue to use the traditional methods on waste management which include burning, or the burial techniques. On the other hand, some citizens throw waste on the streets, a method that threatens public health because it increases cases of diseases related to sanitation problems such as (diarrhea and malaria), especially in suburban and peripheral urban areas. Concerning with the above mentioned problems which constitute a real threat to the public health, some ways are proposed for more sustainable and spatially appropriate solid waste management through recycling, waste sorting, composting, reuse, and reduction of solid waste generation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study was to determine the seasonal and interannual variability and calculate the trends of wind speed in NEB and then validate the mesoscale numerical model for after engage with the microscale numerical model in order to get the wind resource at some locations in the NEB. For this we use two data sets of wind speed (weather stations and anemometric towers) and two dynamic models; one of mesoscale and another of microscale. We use statistical tools to evaluate and validate the data obtained. The simulations of the dynamic mesoscale model were made using data assimilation methods (Newtonian Relaxation and Kalman filter). The main results show: (i) Five homogeneous groups of wind speed in the NEB with higher values in winter and spring and with lower in summer and fall; (ii) The interannual variability of the wind speed in some groups stood out with higher values; (iii) The large-scale circulation modified by the El Niño and La Niña intensified wind speed for the groups with higher values; (iv) The trend analysis showed more significant negative values for G3, G4 and G5 in all seasons and in the annual average; (v) The performance of dynamic mesoscale model showed smaller errors in the locations Paracuru and São João and major errors were observed in Triunfo; (vi) Application of the Kalman filter significantly reduce the systematic errors shown in the simulations of the dynamic mesoscale model; (vii) The wind resource indicate that Paracuru and Triunfo are favorable areas for the generation of energy, and the coupling technique after validation showed better results for Paracuru. We conclude that the objective was achieved, making it possible to identify trends in homogeneous groups of wind behavior, and to evaluate the quality of both simulations with the dynamic model of mesoscale and microscale to answer questions as necessary before planning research projects in Wind-Energy area in the NEB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJETIVO: Estimar la prevalencia y la extensión de la caries radicular en la población adulta y anciana de Brasil. MÉTODOS: A partir de los datos de la Investigación Nacional de Salud Bucal (SBBrasil 2010) se examinaron 9.564 adultos y 7.509 ancianos en domicilios de las 26 capitales y en el Distrito Federal y de 150 municipios del interior de cada macro región. Se implementaron criterios de diagnóstico establecidos por la Organización Mundial de la Salud. Para estudio de la prevalencia y de extensión se utilizó el índice de caries radicular y el índice de raíces cariadas y obturadas. RESULTADOS: La prevalencia de caries radicular fue de 16,7% en los adultos y 13,6% en los ancianos; el índice de raíces cariadas y obturadas fue de 0,42 y 0,32 respectivamente, siendo la mayor parte compuesta por caries no tratadas. Se observaron diferencias en la experiencia de caries radicular entre capitales y macro regiones, con valores mayores en capitales del Norte y Noreste. El índice de caries radicular en los adultos varió de 1,4% en Aracaju (SE) a 15,1% en Salvador (BA) y en los ancianos de 3,5% en Porto Velho (RO) a 29,9% en Palmas (TO). Se verificó incremento de caries radicular con la edad y mayor expresividad de la enfermedad en hombres de ambos grupos etarios. CONCLUSIONES: Se identificó una gran variación de la prevalencia y extensión de la caries radicular entre y dentro de las regiones de Brasil, tanto en adultos como en ancianos, y la mayor parte de la caries radicular se encuentra no tratada. Se recomienda la incorporación de este agravio al sistema de vigilancia en salud bucal, debido a su tendencia creciente.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper will explore a data-driven approach called Sales Resource Management (SRM) that can provide real insight into sales management. The DSMT (Diagnosis, Strategy, Metrics and Tools) framework can be used to solve field sales management challenges. This paper focus on the 6P's strategy of SRM and illustrates how to use them to solve the CAPS (Concentration, Attrition, Performance and Spend) challenges. © 2010 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract

The goal of modern radiotherapy is to precisely deliver a prescribed radiation dose to delineated target volumes that contain a significant amount of tumor cells while sparing the surrounding healthy tissues/organs. Precise delineation of treatment and avoidance volumes is the key for the precision radiation therapy. In recent years, considerable clinical and research efforts have been devoted to integrate MRI into radiotherapy workflow motivated by the superior soft tissue contrast and functional imaging possibility. Dynamic contrast-enhanced MRI (DCE-MRI) is a noninvasive technique that measures properties of tissue microvasculature. Its sensitivity to radiation-induced vascular pharmacokinetic (PK) changes has been preliminary demonstrated. In spite of its great potential, two major challenges have limited DCE-MRI’s clinical application in radiotherapy assessment: the technical limitations of accurate DCE-MRI imaging implementation and the need of novel DCE-MRI data analysis methods for richer functional heterogeneity information.

This study aims at improving current DCE-MRI techniques and developing new DCE-MRI analysis methods for particular radiotherapy assessment. Thus, the study is naturally divided into two parts. The first part focuses on DCE-MRI temporal resolution as one of the key DCE-MRI technical factors, and some improvements regarding DCE-MRI temporal resolution are proposed; the second part explores the potential value of image heterogeneity analysis and multiple PK model combination for therapeutic response assessment, and several novel DCE-MRI data analysis methods are developed.

I. Improvement of DCE-MRI temporal resolution. First, the feasibility of improving DCE-MRI temporal resolution via image undersampling was studied. Specifically, a novel MR image iterative reconstruction algorithm was studied for DCE-MRI reconstruction. This algorithm was built on the recently developed compress sensing (CS) theory. By utilizing a limited k-space acquisition with shorter imaging time, images can be reconstructed in an iterative fashion under the regularization of a newly proposed total generalized variation (TGV) penalty term. In the retrospective study of brain radiosurgery patient DCE-MRI scans under IRB-approval, the clinically obtained image data was selected as reference data, and the simulated accelerated k-space acquisition was generated via undersampling the reference image full k-space with designed sampling grids. Two undersampling strategies were proposed: 1) a radial multi-ray grid with a special angular distribution was adopted to sample each slice of the full k-space; 2) a Cartesian random sampling grid series with spatiotemporal constraints from adjacent frames was adopted to sample the dynamic k-space series at a slice location. Two sets of PK parameters’ maps were generated from the undersampled data and from the fully-sampled data, respectively. Multiple quantitative measurements and statistical studies were performed to evaluate the accuracy of PK maps generated from the undersampled data in reference to the PK maps generated from the fully-sampled data. Results showed that at a simulated acceleration factor of four, PK maps could be faithfully calculated from the DCE images that were reconstructed using undersampled data, and no statistically significant differences were found between the regional PK mean values from undersampled and fully-sampled data sets. DCE-MRI acceleration using the investigated image reconstruction method has been suggested as feasible and promising.

Second, for high temporal resolution DCE-MRI, a new PK model fitting method was developed to solve PK parameters for better calculation accuracy and efficiency. This method is based on a derivative-based deformation of the commonly used Tofts PK model, which is presented as an integrative expression. This method also includes an advanced Kolmogorov-Zurbenko (KZ) filter to remove the potential noise effect in data and solve the PK parameter as a linear problem in matrix format. In the computer simulation study, PK parameters representing typical intracranial values were selected as references to simulated DCE-MRI data for different temporal resolution and different data noise level. Results showed that at both high temporal resolutions (<1s) and clinically feasible temporal resolution (~5s), this new method was able to calculate PK parameters more accurate than the current calculation methods at clinically relevant noise levels; at high temporal resolutions, the calculation efficiency of this new method was superior to current methods in an order of 102. In a retrospective of clinical brain DCE-MRI scans, the PK maps derived from the proposed method were comparable with the results from current methods. Based on these results, it can be concluded that this new method can be used for accurate and efficient PK model fitting for high temporal resolution DCE-MRI.

II. Development of DCE-MRI analysis methods for therapeutic response assessment. This part aims at methodology developments in two approaches. The first one is to develop model-free analysis method for DCE-MRI functional heterogeneity evaluation. This approach is inspired by the rationale that radiotherapy-induced functional change could be heterogeneous across the treatment area. The first effort was spent on a translational investigation of classic fractal dimension theory for DCE-MRI therapeutic response assessment. In a small-animal anti-angiogenesis drug therapy experiment, the randomly assigned treatment/control groups received multiple fraction treatments with one pre-treatment and multiple post-treatment high spatiotemporal DCE-MRI scans. In the post-treatment scan two weeks after the start, the investigated Rényi dimensions of the classic PK rate constant map demonstrated significant differences between the treatment and the control groups; when Rényi dimensions were adopted for treatment/control group classification, the achieved accuracy was higher than the accuracy from using conventional PK parameter statistics. Following this pilot work, two novel texture analysis methods were proposed. First, a new technique called Gray Level Local Power Matrix (GLLPM) was developed. It intends to solve the lack of temporal information and poor calculation efficiency of the commonly used Gray Level Co-Occurrence Matrix (GLCOM) techniques. In the same small animal experiment, the dynamic curves of Haralick texture features derived from the GLLPM had an overall better performance than the corresponding curves derived from current GLCOM techniques in treatment/control separation and classification. The second developed method is dynamic Fractal Signature Dissimilarity (FSD) analysis. Inspired by the classic fractal dimension theory, this method measures the dynamics of tumor heterogeneity during the contrast agent uptake in a quantitative fashion on DCE images. In the small animal experiment mentioned before, the selected parameters from dynamic FSD analysis showed significant differences between treatment/control groups as early as after 1 treatment fraction; in contrast, metrics from conventional PK analysis showed significant differences only after 3 treatment fractions. When using dynamic FSD parameters, the treatment/control group classification after 1st treatment fraction was improved than using conventional PK statistics. These results suggest the promising application of this novel method for capturing early therapeutic response.

The second approach of developing novel DCE-MRI methods is to combine PK information from multiple PK models. Currently, the classic Tofts model or its alternative version has been widely adopted for DCE-MRI analysis as a gold-standard approach for therapeutic response assessment. Previously, a shutter-speed (SS) model was proposed to incorporate transcytolemmal water exchange effect into contrast agent concentration quantification. In spite of richer biological assumption, its application in therapeutic response assessment is limited. It might be intriguing to combine the information from the SS model and from the classic Tofts model to explore potential new biological information for treatment assessment. The feasibility of this idea was investigated in the same small animal experiment. The SS model was compared against the Tofts model for therapeutic response assessment using PK parameter regional mean value comparison. Based on the modeled transcytolemmal water exchange rate, a biological subvolume was proposed and was automatically identified using histogram analysis. Within the biological subvolume, the PK rate constant derived from the SS model were proved to be superior to the one from Tofts model in treatment/control separation and classification. Furthermore, novel biomarkers were designed to integrate PK rate constants from these two models. When being evaluated in the biological subvolume, this biomarker was able to reflect significant treatment/control difference in both post-treatment evaluation. These results confirm the potential value of SS model as well as its combination with Tofts model for therapeutic response assessment.

In summary, this study addressed two problems of DCE-MRI application in radiotherapy assessment. In the first part, a method of accelerating DCE-MRI acquisition for better temporal resolution was investigated, and a novel PK model fitting algorithm was proposed for high temporal resolution DCE-MRI. In the second part, two model-free texture analysis methods and a multiple-model analysis method were developed for DCE-MRI therapeutic response assessment. The presented works could benefit the future DCE-MRI routine clinical application in radiotherapy assessment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bayesian methods offer a flexible and convenient probabilistic learning framework to extract interpretable knowledge from complex and structured data. Such methods can characterize dependencies among multiple levels of hidden variables and share statistical strength across heterogeneous sources. In the first part of this dissertation, we develop two dependent variational inference methods for full posterior approximation in non-conjugate Bayesian models through hierarchical mixture- and copula-based variational proposals, respectively. The proposed methods move beyond the widely used factorized approximation to the posterior and provide generic applicability to a broad class of probabilistic models with minimal model-specific derivations. In the second part of this dissertation, we design probabilistic graphical models to accommodate multimodal data, describe dynamical behaviors and account for task heterogeneity. In particular, the sparse latent factor model is able to reveal common low-dimensional structures from high-dimensional data. We demonstrate the effectiveness of the proposed statistical learning methods on both synthetic and real-world data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

How do infants learn word meanings? Research has established the impact of both parent and child behaviors on vocabulary development, however the processes and mechanisms underlying these relationships are still not fully understood. Much existing literature focuses on direct paths to word learning, demonstrating that parent speech and child gesture use are powerful predictors of later vocabulary. However, an additional body of research indicates that these relationships don’t always replicate, particularly when assessed in different populations, contexts, or developmental periods.

The current study examines the relationships between infant gesture, parent speech, and infant vocabulary over the course of the second year (10-22 months of age). Through the use of detailed coding of dyadic mother-child play interactions and a combination of quantitative and qualitative data analytic methods, the process of communicative development was explored. Findings reveal non-linear patterns of growth in both parent speech content and child gesture use. Analyses of contingency in dyadic interactions reveal that children are active contributors to communicative engagement through their use of gestures, shaping the type of input they receive from parents, which in turn influences child vocabulary acquisition. Recommendations for future studies and the use of nuanced methodologies to assess changes in the dynamic system of dyadic communication are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic–biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fine-fraction (<63 µm) grain-size analyses of 530 samples from Holes 1095A, 1095B, and 1095D allow assessment of the downhole grain-size distribution at Drift 7. A variety of data processing methods, statistical treatment, and display techniques were used to describe this data set. The downhole fine-fraction grain-size distribution documents significant variations in the average grain-size composition and its cyclic pattern, revealed in five prominent intervals: (1) between 0 and 40 meters composite depth (mcd) (0 and 1.3 Ma), (2) between 40 and 80 mcd (1.3 and 2.4 Ma), (3) between 80 and 220 mcd (2.4 and 6 Ma), (4) between 220 and 360 mcd, and (5) below 360 mcd (prior to 8.1 Ma). In an approach designed to characterize depositional processes at Drift 7, we used statistical parameters determined by the method of moments for the sortable silt fraction to distinguish groups in the grainsize data set. We found three distinct grain-size populations and used these for a tentative environmental interpretation. Population 1 is related to a process in which glacially eroded shelf material was redeposited by turbidites with an ice-rafted debris influence. Population 2 is composed of interglacial turbidites. Population 3 is connected to depositional sequence tops linked to bioturbated sections that, in turn, are influenced by contourite currents and pelagic background sedimentation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the global phenomena with threats to environmental health and safety is artisanal mining. There are ambiguities in the manner in which an ore-processing facility operates which hinders the mining capacity of these miners in Ghana. These problems are reviewed on the basis of current socio-economic, health and safety, environmental, and use of rudimentary technologies which limits fair-trade deals to miners. This research sought to use an established data-driven, geographic information (GIS)-based system employing the spatial analysis approach for locating a centralized processing facility within the Wassa Amenfi-Prestea Mining Area (WAPMA) in the Western region of Ghana. A spatial analysis technique that utilizes ModelBuilder within the ArcGIS geoprocessing environment through suitability modeling will systematically and simultaneously analyze a geographical dataset of selected criteria. The spatial overlay analysis methodology and the multi-criteria decision analysis approach were selected to identify the most preferred locations to site a processing facility. For an optimal site selection, seven major criteria including proximity to settlements, water resources, artisanal mining sites, roads, railways, tectonic zones, and slopes were considered to establish a suitable location for a processing facility. Site characterizations and environmental considerations, incorporating identified constraints such as proximity to large scale mines, forest reserves and state lands to site an appropriate position were selected. The analysis was limited to criteria that were selected and relevant to the area under investigation. Saaty’s analytical hierarchy process was utilized to derive relative importance weights of the criteria and then a weighted linear combination technique was applied to combine the factors for determination of the degree of potential site suitability. The final map output indicates estimated potential sites identified for the establishment of a facility centre. The results obtained provide intuitive areas suitable for consideration

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An investigation into karst hazard in southern Ontario has been undertaken with the intention of leading to the development of predictive karst models for this region. The reason these are not currently feasible is a lack of sufficient karst data, though this is not entirely due to the lack of karst features. Geophysical data was collected at Lake on the Mountain, Ontario as part of this karst investigation. This data was collected in order to validate the long-standing hypothesis that Lake on the Mountain was formed from a sinkhole collapse. Sub-bottom acoustic profiling data was collected in order to image the lake bottom sediments and bedrock. Vertical bedrock features interpreted as solutionally enlarged fractures were taken as evidence for karst processes on the lake bottom. Additionally, the bedrock topography shows a narrower and more elongated basin than was previously identified, and this also lies parallel to a mapped fault system in the area. This suggests that Lake on the Mountain was formed over a fault zone which also supports the sinkhole hypothesis as it would provide groundwater pathways for karst dissolution to occur. Previous sediment cores suggest that Lake on the Mountain would have formed at some point during the Wisconsinan glaciation with glacial meltwater and glacial loading as potential contributing factors to sinkhole development. A probabilistic karst model for the state of Kentucky, USA, has been generated using the Weights of Evidence method. This model is presented as an example of the predictive capabilities of these kind of data-driven modelling techniques and to show how such models could be applied to karst in Ontario. The model was able to classify 70% of the validation dataset correctly while minimizing false positive identifications. This is moderately successful and could stand to be improved. Finally, suggestions to improving the current karst model of southern Ontario are suggested with the goal of increasing investigation into karst in Ontario and streamlining the reporting system for sinkholes, caves, and other karst features so as to improve the current Ontario karst database.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A partir de un análisis temático inductivo, este artículo explora la visión ciudadana sobre la esfera pública expresada en las cartas de los lectores de los diarios El Tiempo y El Heraldo de Colombia. Los resultados muestran cómo la identidad colectiva de los lectores apareció en forma transversal en las cartas, para dar cuenta de una comunidad de adultos que se autodefine como “colombianos de bien”. El análisis reveló dos unidades de significado: posturas sobre la administración de lo público y antagonismos en la esfera pública, centrada en el conflicto político con las guerrillas. A través de estas se pudieron hacer visibles los llamamientos vívidos de los lectores al gobierno, funcionarios públicos, actores al margen de la ley y a sus compatriotas, para movilizarse para exigir cambios sociales largamente esperados.