919 resultados para DIFFERENTIAL EXPRESSION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucocorticoids are steroid hormones with important functions in development, immune regulation, and glucose metabolism. The adrenal glands are the predominant source of glucocorticoids; however, there is increasing evidence for extraadrenal glucocorticoid synthesis in thymus, brain, skin, and vascular endothelium. We recently identified intestinal epithelial cells as an important source of glucocorticoids, which regulate the activation of local intestinal immune cells. The molecular regulation of intestinal glucocorticoid synthesis is currently unexplored. In this study we investigated the transcriptional regulation of the steroidogenic enzymes P450 side-chain cleavage enzyme and 11beta-hydroxylase, and the production of corticosterone in the murine intestinal epithelial cell line mICcl2 and compared it with that in the adrenocortical cell line Y1. Surprisingly, we observed a reciprocal stimulation pattern in these two cell lines. Elevation of intracellular cAMP induced the expression of steroidogenic enzymes in Y1 cells, whereas it inhibited steroidogenesis in mICcl2 cells. In contrast, phorbol ester induced steroidogenic enzymes in intestinal epithelial cells, which was synergistically enhanced upon transfection of cells with the nuclear receptors steroidogenic factor-1 (NR5A1) and liver receptor homolog-1 (NR5A2). Finally, we observed that basal and liver receptor homolog-1/phorbol ester-induced expression of steroidogenic enzymes in mICcl2 cells was inhibited by the antagonistic nuclear receptor small heterodimer partner. We conclude that the molecular basis of glucocorticoid synthesis in intestinal epithelial cells is distinct from that in adrenal cells, most likely representing an adaptation to the local environment and different requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Gut hormone receptors are over-expressed in human cancer and allow receptor-targeted tumor imaging and therapy. A novel promising receptor for these purposes is the secretin receptor. The secretin receptor expression was investigated in the human liver because the liver is a physiological secretin target and because novel diagnostic and treatment modalities are needed for liver cancer. METHODS: Nineteen normal livers, 10 cirrhotic livers, 35 cholangiocarcinomas, and 45 hepatocellular carcinomas were investigated for secretin receptor expression by in vitro receptor autoradiography using (125)I-[Tyr(10)] rat secretin and, in selected cases, for secretin receptor mRNA by RT-PCR. RESULTS: Secretin receptors were present in normal bile ducts and ductules, but not in hepatocytes. A significant receptor up-regulation was observed in ductular reaction in liver cirrhosis. Twenty-two (63%) cholangiocarcinomas were positive for secretin receptors, while hepatocellular carcinomas were negative. RT-PCR revealed wild-type receptor mRNA in the non-neoplastic liver, wild-type and spliced variant receptor mRNAs in cholangiocarcinomas found receptor positive in autoradiography experiments, and no receptor transcripts in autoradiographically negative cholangiocarcinomas. CONCLUSIONS: The expression of secretin receptors in the biliary tract is the molecular basis of the secretin-induced bicarbonate-rich choleresis in man. The high receptor expression in cholangiocarcinomas may be used for in vivo secretin receptor-targeting of these tumors and for the differential diagnosis with hepatocellular carcinoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasminogen activator inhibitors (PAIs) play critical roles in regulating cellular invasion and fibrinolysis. An increase in the ratio of PAI-1/PAI-2 in placenta and maternal serum is suggested to result in excessive intervillous fibrin deposition and placental infarction in pregnancies complicated by preeclampsia (PE) and intrauterine growth restriction (IUGR). In the current study we used dual (maternal and fetal) perfusion of human term placentas to examine the release of PAIs to the intervillous space. ELISA revealed a significant time-dependent increase in total PAI-1 levels in maternal perfusate (MP) between 1 and 7h of perfusion. Conversely, PAI-2 levels decreased resulting in a 3-fold increase in the PAI-1/PAI-2 ratio in MP. Levels of PAI-1, but not PAI-2, in placental tissue extracts increased during perfusion. In perfusions carried out with xanthine and xanthine oxidase (X + XO), compounds used to generate reactive oxygen species (ROS), no time-dependent increase in total PAI-1 levels was observed. In addition, X + XO treatment promoted a 3-fold reduction in active PAI-1 levels in MP, indicating that ROS decrease PAI-1 release to MP. The finding of a time-dependent change in patterns of PAI expression and response to ROS indicates the utility of dual perfusion as a model to dissect mechanism(s) promoting aberrant fibrinolysis in pregnancies complicated by PE and IUGR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Listeria monocytogenes is a prototypic bacterium for studying innate and adaptive cellular immunity as well as host defense. Using human monocyte-derived macrophages, we report that an infection with a wild-type strain, but not a listeriolysin O-deficient strain, of the Gram-positive bacterium L. monocytogenes induces expression of IFN-beta and a bioactive type I IFN response. Investigating the activation of signaling pathways in human macrophages after infection revealed that a wild-type strain and a hemolysin-deficient strain of L. monocytogenes activated the NF-kappaB pathway and induced a comparable TNF response. p38 MAPK and activating transcription factor 2 were phosphorylated following infection with either strain, and IFN-beta gene expression induced by wild-type L. monocytogenes was reduced when p38 was inhibited. However, neither IFN regulatory factor (IRF) 3 translocation to the nucleus nor posttranslational modifications and dimerizations were observed after L. monocytogenes infection. In contrast, vesicular stomatitis virus and LPS triggered IRF3 activation and signaling. When IRF3 was knocked down using small interfering RNA, a L. monocytogenes-induced IFN-beta response remained unaffected whereas a vesicular stomatitis virus-triggered response was reduced. Evidence against the possibility that IRF7 acts in place of IRF3 is provided. Thus, we show that wild-type L. monocytogenes induced an IFN-beta response in human macrophages and propose that this response involves p38 MAPK and activating transcription factor 2. Using various stimuli, we show that IRF3 is differentially activated during type I IFN responses in human macrophages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Increased activity of single ventricular L-type Ca(2+)-channels (L-VDCC) is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary beta-subunits as a possible explanation. METHODS AND RESULTS: By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression pattern of auxiliary L-VDCC beta-subunit gene products. In HEK293-cells we show differential modulation of single L-VDCC activity by coexpression of several human cardiac beta-subunits: Unlike beta(1) or beta(3) isoforms, beta(2a) and beta(2b) induce a high-activity channel behavior typical of failing myocytes. In accordance, beta(2)-subunit mRNA and protein are up-regulated in failing human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac Ca(V)1.2 also reveal increased single-channel activity and sarcolemmal beta(2) expression when entering into the maladaptive stage of heart failure. Interestingly, these animals, when still young and non-failing ("Adaptive Phase"), reveal the opposite phenotype, viz: reduced single-channel activity accompanied by lowered beta(2) expression. Additional evidence for the cause-effect relationship between beta(2)-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both constitutive Ca(V)1.2 and inducible beta(2) cardiac overexpression. Here in non-failing hearts induction of beta(2)-subunit overexpression mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure. CONCLUSIONS: Our study presents evidence of the pathobiochemical relevance of beta(2)-subunits for the electrophysiological phenotype of cardiac L-VDCC and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adult mammalian cochlea lacks regenerative capacity, which is the main reason for the permanence of hearing loss. Vestibular organs, in contrast, replace a small number of lost hair cells. The reason for this difference is unknown. In this work we show isolation of sphere-forming stem cells from the early postnatal organ of Corti, vestibular sensory epithelia, the spiral ganglion, and the stria vascularis. Organ of Corti and vestibular sensory epithelial stem cells give rise to cells that express multiple hair cell markers and express functional ion channels reminiscent of nascent hair cells. Spiral ganglion stem cells display features of neural stem cells and can give rise to neurons and glial cell types. We found that the ability for sphere formation in the mouse cochlea decreases about 100-fold during the second and third postnatal weeks; this decrease is substantially faster than the reduction of stem cells in vestibular organs, which maintain their stem cell population also at older ages. Coincidentally, the relative expression of developmental and progenitor cell markers in the cochlea decreases during the first 3 postnatal weeks, which is in sharp contrast to the vestibular system, where expression of progenitor cell markers remains constant or even increases during this period. Our findings indicate that the lack of regenerative capacity in the adult mammalian cochlea is either a result of an early postnatal loss of stem cells or diminishment of stem cell features of maturing cochlear cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vivo studies support selective neuronal vulnerability to hypoxia-ischemia (HI) in the developing brain. Since differences in intrinsic properties of neurons might be responsible, pure cultures containing immature neurons (6-8 days in vitro) isolated from mouse cortex and hippocampus, regions chosen for their marked vulnerability to oxidative stress, were studied under in vitro ischemic conditions-oxygen-glucose deprivation (OGD). Twenty-four hours of reoxygenation after 2.5 h of OGD induced significantly greater cell death in hippocampal than in cortical neurons (67.8% vs. 33.4%, P = 0.0068). The expression of neuronal nitric oxide synthase (nNOS) protein, production of nitric oxide (NO), and reactive oxygen species (ROS), as well as glutathione peroxidase (GPx) activity and intracellular levels of reduced glutathione (GSH), were measured as indicators of oxidative stress. Hippocampal neurons had markedly higher nNOS expression than cortical neurons by 24 h of reoxygenation, which coincided with an increase in NO production, and significantly greater ROS accumulation. GPx activity declined significantly in hippocampal but not in cortical neurons at 4 and 24 h after OGD. The decrease in GSH level in hippocampal neurons correlated with the decline of GPx activity. Our data suggest that developing hippocampal neurons are more sensitive to OGD than cortical neurons. This finding supports our in vivo studies showing that mouse hippocampus is more vulnerable than cortex after neonatal HI. An imbalance between excess prooxidant production (increased nNOS expression, and NO and ROS production) and insufficient antioxidant defenses created by reduced GPx activity and GSH levels may, in part, explain the higher susceptibility to OGD of immature hippocampal neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical forces are essential for connective tissue homeostasis. The extracellular matrix (ECM) plays a key role in the transmission of forces generated by the organism (e.g. muscle contraction) and externally applied (e.g. gravity). The expression of specific ECM proteins such as collagens and tenascin-C, as well as of matrix metalloproteinases, involved in their turnover, is influenced by mechanical stimuli. The precise mechanisms by which mechanical strains are translated into chemical signals and lead to differential gene expression are however not fully understood. Cell-matrix adhesion sites are good candidates for hosting a "mechanosensory switch", as they transmit forces from the ECM to the cytoskeleton and vice versa by physically linking the cytoskeleton to the ECM. Integrins, transmembrane proteins located to these adhesion sites, have been shown to trigger a set of internal signaling cascades after mechanical stimulation. We have shown that the expression level of tenascin-C directly correlates with externally applied mechanical stress, as well as with RhoA/RhoA-dependent kinase-mediated cytoskeletal tension. Presumably other genes are regulated in a similar manner. The changes in ECM composition and mechanical properties derived from mechanical stress are relevant in medical intervention after ligament and tendon injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

beta-galactosidase (GLB1) forms a functional lysosomal multienzyme complex with lysosomal protective protein (PPCA) and neuraminidase 1 (NEU1) which is important for its intracellular processing and activity. Mutations in the beta-galactosidase gene cause the lysosomal storage disease G(M1)-gangliosidosis. In order to identify additional molecular changes associated with the presence of beta-galactosidase mutations, the expression of canine lysosomal multienzyme complex components in GLB1(+/+), GLB1(+/-) and GLB1(-/-) fibroblasts was investigated by quantitative RT-PCR, Western blot and enzymatic assays. Quantitative RT-PCR revealed differential regulation of total beta-galactosidase, beta-galactosidase variants and protective protein for beta-galactosidase gene (PPGB) in GLB1(+/-) and GLB1(-/-) compared to GLB1(+/+) fibroblasts. Furthermore, it was shown that PPGB levels gradually increased with the number of mutant beta-galactosidase alleles while no change in the NEU1 expression was observed. This is the first study that simultaneously examine the effect of GLB1(+/+), GLB1(+/-) and GLB1(-/-) genotypes on the expression of lysosomal multienzyme complex components. The findings reveal a possible adaptive process in GLB1 homozygous mutant and heterozygous individuals that could facilitate the design of efficient therapeutic strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reverse transcribed RNAs coding for YnKn, YnSKn, SKn, and KS dehydrin types in drought-stressed white clover (Trifolium repens) were identified and characterized. The nucleotide analyses revealed the complex nature of dehydrin-coding sequences, often featured with alternative start and stop codons within the open reading frames, which could be a prerequisite for high variability among the transcripts originating from a single gene. For some dehydrin sequences, the existence of natural antisense transcripts was predicted. The differential distribution of dehydrin homologues in roots and leaves from a single white clover stolon under normal and drought conditions was evaluated by semi-quantitative RT-PCR and immunoblots with antibodies against the conserved K-, Y- and S-segments. The data suggest that different dehydrin classes have distinct roles in the drought stress response and vegetative development, demonstrating some specific characteristic features. Substantial levels of YSK-type proteins with different molecular weights were immunodetected in the non-stressed developing leaves. The acidic SK2 and KS dehydrin transcripts exhibited some developmental gradient in leaves. A strong increase of YK transcripts was documented in the fully expanded leaves and roots of drought-stressed individuals. The immunodetected drought-induced signals imply that Y- and K-segment containing dehydrins could be the major inducible Late Embryogenesis Abundant class 2 proteins (LEA 2) that accumulate predominantly under drought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite's nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, mice were vaccinated intranasally with recombinant N. caninum protein disulphide isomerase (NcPDI) emulsified in cholera toxin (CT) or cholera toxin subunit B (CTB) from Vibrio cholerae. The effects of vaccination were assessed in the murine nonpregnant model and the foetal infection model, respectively. In the nonpregnant mice, previous results were confirmed, in that intranasal vaccination with recNcPDI in CT was highly protective, and low cerebral parasite loads were noted upon real-time PCR analysis. Protection was accompanied by an IgG1-biased anti-NcPDI response upon infection and significantly increased expression of Th2 (IL-4/IL-10) and IL-17 transcripts in spleen compared with corresponding values in mice treated with CT only. However, vaccination with recNcPDI in CT did not induce significant protection in dams and their offspring. In the dams, increased splenic Th1 (IFN-γ/IL-12) and Th17 mRNA expressions was detected. No protection was noted in the groups vaccinated with recNcPDI emulsified in CTB. Thus, vaccination with recNcPDI in CT in nonpregnant mice followed by challenge infection induced a protective Th2-biased immune response, while in the pregnant mouse model, the same vaccine formulation resulted in a Th1-biased inflammatory response and failed to protect dams and their progeny.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human steroid biosynthesis depends on a specifically regulated cascade of enzymes including 3β-hydroxysteroid dehydrogenases (HSD3Bs). Type 2 HSD3B catalyzes the conversion of pregnenolone, 17α-hydroxypregnenolone and dehydroepiandrosterone to progesterone, 17α-hydroxyprogesterone and androstenedione in the human adrenal cortex and the gonads but the exact regulation of this enzyme is unknown. Therefore, specific downregulation of HSD3B2 at adrenarche around age 6-8 years and characteristic upregulation of HSD3B2 in the ovaries of women suffering from the polycystic ovary syndrome remain unexplained prompting us to study the regulation of HSD3B2 in adrenal NCI-H295R cells. Our studies confirm that the HSD3B2 promoter is regulated by transcription factors GATA, Nur77 and SF1/LRH1 in concert and that the NBRE/Nur77 site is crucial for hormonal stimulation with cAMP. In fact, these three transcription factors together were able to transactivate the HSD3B2 promoter in placental JEG3 cells which normally do not express HSD3B2. By contrast, epigenetic mechanisms such as methylation and acetylation seem not involved in controlling HSD3B2 expression. Cyclic AMP was found to exert differential effects on HSD3B2 when comparing short (acute) versus long-term (chronic) stimulation. Short cAMP stimulation inhibited HSD3B2 activity directly possibly due to regulation at co-factor or substrate level or posttranslational modification of the protein. Long cAMP stimulation attenuated HSD3B2 inhibition and increased HSD3B2 expression through transcriptional regulation. Although PKA and MAPK pathways are obvious candidates for possibly transmitting the cAMP signal to HSD3B2, our studies using PKA and MEK1/2 inhibitors revealed no such downstream signaling of cAMP. However, both signaling pathways were clearly regulating HSD3B2 expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The induction of late long-term potentiation (L-LTP) involves complex interactions among second-messenger cascades. To gain insights into these interactions, a mathematical model was developed for L-LTP induction in the CA1 region of the hippocampus. The differential equation-based model represents actions of protein kinase A (PKA), MAP kinase (MAPK), and CaM kinase II (CAMKII) in the vicinity of the synapse, and activation of transcription by CaM kinase IV (CAMKIV) and MAPK. L-LTP is represented by increases in a synaptic weight. Simulations suggest that steep, supralinear stimulus-response relationships between stimuli (e.g., elevations in [Ca(2+)]) and kinase activation are essential for translating brief stimuli into long-lasting gene activation and synaptic weight increases. Convergence of multiple kinase activities to induce L-LTP helps to generate a threshold whereby the amount of L-LTP varies steeply with the number of brief (tetanic) electrical stimuli. The model simulates tetanic, -burst, pairing-induced, and chemical L-LTP, as well as L-LTP due to synaptic tagging. The model also simulates inhibition of L-LTP by inhibition of MAPK, CAMKII, PKA, or CAMKIV. The model predicts results of experiments to delineate mechanisms underlying L-LTP induction and expression. For example, the cAMP antagonist RpcAMPs, which inhibits L-LTP induction, is predicted to inhibit ERK activation. The model also appears useful to clarify similarities and differences between hippocampal L-LTP and long-term synaptic strengthening in other systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Abundant expression of somatostatin receptors (sst) is a characteristic of neuroendocrine tumors (NET). Thus, radiolabeled somatostatin analogs have emerged as important tools for both in vivo diagnosis and therapy of NET. The two compounds most often used in functional imaging with positron emission tomography (PET) are (68)Ga-DOTATATE and (68)Ga-DOTATOC. Both analogs share a quite similar sst binding profile. However, the in vitro affinity of (68)Ga-DOTATATE in binding the sst subtype 2 (sst2) is approximately tenfold higher than that of (68)Ga-DOTATOC. This difference may affect their efficiency in detection of NET lesions, as sst2 is the predominant receptor subtype on gastroenteropancreatic NET. We thus compared the diagnostic value of PET/CT with both radiolabeled somatostatin analogs ((68)Ga-DOTATATE and (68)Ga-DOTATOC) in the same patients with gastroenteropancreatic NET. PATIENTS AND METHODS Twenty-seven patients with metastatic gastroenteropancreatic NET underwent (68)Ga-DOTATOC and (68)Ga-DOTATATE PET/CT as part of the workup before prospective peptide receptor radionuclide therapy (PRRT). The performance of both imaging methods was analyzed and compared for detection of individual lesions per patient and for eight defined body regions. A region was regarded as positive if at least one lesion was detected in that region. In addition, radiopeptide uptake in terms of the maximal standardized uptake value (SUV(max)) was compared for concordant lesions and renal parenchyma. RESULTS Fifty-one regions were found positive with both (68)Ga-DOTATATE and (68)Ga-DOTATOC. Overall, however, significantly fewer lesions were detected with (68)Ga-DOTATATE in comparison with (68)Ga-DOTATOC (174 versus 179, p < 0.05). Mean (68)Ga-DOTATATE SUV(max) across all lesions was significantly lower compared with (68)Ga-DOTATOC (16.9 ± 6.8 versus 22.1 ± 12.0, p < 0.01). Mean SUV(max) for renal parenchyma was not significantly different between (68)Ga-DOTATATE and (68)Ga-DOTATOC (12.6 ± 2.6 versus 12.6 ± 2.7). CONCLUSIONS (68)Ga-DOTATOC and (68)Ga-DOTATATE possess similar diagnostic accuracy for detection of gastroenteropancreatic NET lesions (with a potential advantage of (68)Ga-DOTATOC) despite their evident difference in affinity for sst2. Quite unexpectedly, maximal uptake of (68)Ga-DOTATOC tended to be higher than its (68)Ga-DOTATATE counterpart. However, tumor uptake shows high inter- and intraindividual variance with unpredictable preference of one radiopeptide. Thus, our data encourage the application of different sst ligands to enable personalized imaging and therapy of gastroenteropancreatic NET with optimal targeting of tumor receptors.