933 resultados para Cytokine biotinylée


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proliferative Diabetic Retinopathy (PDR) and Eales' Disease (ED) have different aetiologies although they share certain common clinical symptoms including pre-retinal neovascularization. Since there is a need to understand if the shared end-stage angiogenic pathology of PDR and ED is driven by common stimulating factors, we have studied the cytokines contained in vitreous from both patient groups and analyzed the angiogenic potential of these samples in vitro.

Material and Methods

Vitreous samples from patients with PDR (n = 13) and ED (n = 5) were quantified for various cytokines using a cytokine biochip array and sandwich ELISA. An additional group of patients (n = 5) with macular hole (MH) was also studied for comparison. To determine the angiogenic potential of these vitreous samples, they were analyzed for their ability to induce tubulogenesis in human microvascular endothelial cells. Further, the effect of anti-VEGF (Ranibizumab) and anti-IL-6 antibodies were studied on vitreous-mediated vascular tube formation.

Results

Elevated levels of IL-6, IL-8, MCP-1 and VEGF were observed in vitreous of both PDR and ED when compared to MH. PDR and ED vitreous induced greater levels of endothelial cell tube formation compared to controls without vitreous (P<0.05). When VEGF in vitreous was neutralized by clinically-relevant concentrations of Ranibizumab, tube length was reduced significantly in 5 of 6 PDR and 3 of 5 ED samples. Moreover, when treated with IL-6 neutralizing antibody, apparent reduction (71.4%) was observed in PDR vitreous samples.

Conclusions

We have demonstrated that vitreous specimens from PDR and ED patients share common elevations of pro-inflammatory and pro-angiogenic cytokines. This suggests that common cytokine profiles link these two conditions.

Figures 12

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes the preclinical development of a matrix-type silicone elastomer vaginal ring device designed to provide controlled release of UC781, a non-nucleoside re- verse transcriptase inhibitor. Testing of both human- and macaque-sized rings in a sink condition in vitro release model demonstrated continuous UC781 release in quantities consid- ered sufficient to maintain vaginal fluid concentrations at levels 82–860-fold higher than the in vitro IC50 (2.0 to 10.4 nM) and therefore potentially protect against mucosal trans- mission of HIV. The 100-mg UC781 rings were well tolerated in pig-tailed macaques, did not induce local inflammation as determined by cytokine analysis and maintained median con- centrations in vaginal fluids of UC781 in the range of 0.27 to 5.18 mM during the course of the 28-day study. Analysis of residual UC781 content in rings after completion of both the in vitro release and macaque pharmacokinetic studies revealed that 57 and 5 mg of UC781 was released, respectively. The pharmacokinetic analysis of a 100-mg UC781 vaginal ring in pig-tailed macaques showed poor in vivo–in vitro correlation, attributed to the very poor solubility of UC781 in vaginal fluid and resulting in a dissolution-controlled drug release mecha- nism rather than the expected diffusion-controlled mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cationic amphipathic α-helical peptides are intensively studied classes of host defence peptides (HDPs). Three peptides, peptide glycine-leucine-amide (PGLa-AM1), caerulein-precursor fragment (CPF-AM1) and magainin-AM1, originally isolated from norepinephrine-stimulated skin secretions of the African volcano frog Xenopus amieti (Pipidae), were studied for their antimicrobial and immunomodulatory activities against oral and respiratory pathogens. Minimal effective concentrations (MECs), determined by radial diffusion assay, were generally lower than minimal inhibitory concentrations (MICs) determined by microbroth dilution. PGLa-AM1 and CPF-AM1 were particularly active against Streptococcus mutans and all three peptides were effective against Fusobacterium nucleatum, whereas Enterococcus faecalis and Candida albicans proved to be relatively resistant micro-organisms. A type strain of Pseudomonas aeruginosa was shown to be more susceptible than the clinical isolate studied. PGLa-AM1 displayed the greatest propensity to bind lipopolysaccharide (LPS) from Escherichia coli, P. aeruginosa and Porphyromonas gingivalis. All three peptides showed less binding to P. gingivalis LPS than to LPS from the other species studied. Oral fibroblast viability was unaffected by 50. μM peptide treatments. Production of the pro-inflammatory cytokine IL-8 by oral fibroblasts was significantly increased following treatment with 1 or 10. μM magainin-AM1 but not following treatment with PGLa-AM1 or CPF-AM1. In conclusion, as well as possessing potent antimicrobial actions, the X. amieti peptides bound to LPS from three human pathogens and had no effect on oral fibroblast viability. CPF-AM1 and PGLa-AM1 show promise as templates for the design of novel analogues for the treatment of oral and dental diseases associated with bacteria or fungi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Suppressor of cytokine signalling (SOCS) proteins are feedback inhibitors of the JAK/STAT pathway. SOCS3 critically controls STAT3 activation, cytokine signalling and inflammatory gene expression in macrophages and microglia. In this study, we investigated the role of SOCS3/STAT3 in myeloid cells in the initiation and progression of diabetic retinopathy (DR). 
Methods: Mice with a conditional deletion of SOCS3 in myeloid cells (LysMCre-SOCS3 fl/fl) and C57BL/6J (as control) were rendered diabetic by a low-dose multiple intraperitoneal injections of Stroptozocine. Diabetes related retinal changes, including leukostasis, acellular capilliaries, and microglial activation were assessed at different stages of disease. Bone marrow derived macrophages (BMDMs) from LysMCreSOCS3 fl/fl and C57BL/6J mice were cultured in high glucose (HG) medium, and cell activation was evaluated by real-time RT-PCR.
Results: In C57BL/6J diabetic mice the expression of phosphorylated STAT3 (pSTAT3) was increased and SOCS3 was decreased in the retina. Interleukin 6 (IL-6), the main cytokine that stimulates STAT3 activation, was increased in the plamsa in diabetic mice. Although blood glucose levels and Hbac-1 were comparable between LysMCre-SOCS3fl/fl and WT mice after STZ injection, the LysMCreSOCS3 fl/fl diabetic mice developed severe retinal vasculopathy, including increased leukostasis and microglial activation at one month and enhanced acellular capillary formation at 6 months after diabetes induction. 
Conclusions: our study suggests that the JAK/STAT3 pathway is involved in the initiation and progression of DR, and uncontrolled STAT3 activation results in accelerated DR progression. Targeting the STAT3 pathway may be a novel approach for the management of DR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background

Whilst there have been a number of insights into the subsets of CD4+ T cells induced by pathogenicBacillus anthracis infections in animal models, how these findings relate to responses generated in naturally infected and vaccinated humans has yet to be fully established. We describe the cytokine profile produced in response to T cell stimulation with a previously defined immunodominant antigen of anthrax, lethal factor (LF), domain IV, in cohorts of individuals with a history of cutaneous anthrax, compared with vaccinees receiving the U.K. licenced Anthrax Vaccine Precipitated (AVP) vaccine.

Findings

We found that immunity following natural cutaneous infection was significantly different from that seen after vaccination. AVP vaccination was found to result in a polarized IFNγ CD4+ T cell response, while the individuals exposed to B. anthracis by natural infection mounted a broader cytokine response encompassing IFNγ, IL-5, −9, −10, −13, −17, and −22.

Conclusions

Vaccines seeking to incorporate the robust, long-lasting, CD4 T cell immune responses observed in naturally acquired cutaneous anthrax cases may need to elicit a similarly broad spectrum cellular immune response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resveratrol offers pleiotropic health benefits including a reported ability to inhibit lipopolysaccharide (LPS)-induced cytokine production. The aim of this work was to prepare, characterize and evaluate a resveratrol nanoparticulate formulation based on zein. For this purpose, the oral bioavailability of the encapsulated polyphenol as well as its anti-inflammatory effects in a mouse model of endotoxic shock was studied. The resveratrol-loaded nanoparticles displayed a mean size of 307±3 nm, with a negative zeta potential (-51.1±1.55 mV), and a polyphenol loading of 80.2±3.26 μg/mg. In vitro, the release of resveratrol from the nanoparticles was found to be pH independent and adjusted well to the Peppas-Sahlin kinetic model, suggesting a mechanism based on the combination of diffusion and erosion of the nanoparticle matrix. Pharmacokinetic studies demonstrated that zein-based nanoparticles provided high and prolonged plasma levels of the polyphenol for at least 48 h. The oral bioavailability of resveratrol when administered in these nanoparticles increased up to 50% (19.2-fold higher than for the control solution of the polyphenol). Furthermore, nanoparticles administered daily for 7 days at 15 mg/kg, were able to diminish the endotoxic symptoms induced in mice by the intraperitoneal administration of LPS (i.e., hypothermia, piloerection and stillness). In addition, serum TNF-α levels were slightly lower (approximately 15%) than those observed in the control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The UK Refractory Asthma Stratification Programme(RASP-UK) will explore novel biomarker stratificationstrategies in severe asthma to improve clinicalmanagement and accelerate development of newtherapies. Prior asthma mechanistic studies have notstratified on inflammatory phenotype and theunderstanding of pathophysiological mechanisms inasthma without Type 2 cytokine inflammation is limited.RASP-UK will objectively assess adherence tocorticosteroids (CS) and examine a novel compositebiomarker strategy to optimise CS dose; this will alsoaddress what proportion of patients with severe asthmahave persistent symptoms without eosinophilic airwaysinflammation after progressive CS withdrawal. There will be interactive partnership with the pharmaceutical industry to facilitate access to stratified populations for novel therapeutic studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fetal ovarian development and primordial follicle formation are imperative for adult fertility in the female. Data suggest the interleukin (IL)6-type cytokines, leukaemia inhibitory factor (LIF), IL6, oncostatin M (OSM) and ciliary neurotrophic factor (CNTF), are able to regulate the survival, proliferation and differentiation of fetal murine germ cells (GCs) in vivo and in vitro. We postulated that these factors may play a similar role during early human GC development and primordial follicle formation. To test this hypothesis, we have investigated the expression and regulation of IL6-type cytokines, using quantitative reverse transcription polymerase chain reaction and immunohistochemistry. Expression of transcripts encoding OSM increased significantly across the gestational range examined (8-20 weeks), while expression of IL6 increased specifically between the first (8-11 weeks) and early second (12-16 weeks) trimesters, co-incident with the initiation of meiosis. LIF and CNTF expression remained unchanged. Expression of the genes encoding the LIF and IL6 receptors, and their common signalling subunit gp130, was also found to be developmentally regulated, with expression increasing significantly with increasing gestation. LIF receptor and gp130 proteins localized exclusively to GCs, including oocytes in primordial follicles, indicating this cell type to be the sole target of IL6-type cytokine signalling in the human fetal ovary. These data establish that IL6-type cytokines and their receptors are expressed in the human fetal ovary and may directly influence GC development at multiple stages of maturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Until recently the airway epithelial cell (AEC) was considered a simple barrier that prevented entry of inhaled matter into the lung parenchyma. The AEC is now recognized as having an important role in the inflammatory response of the respiratory system to inhaled exposures, and abnormalities of these responses are thought to be important to asthma pathogenesis. This review first explores how the challenges of studying nasal and bronchial AECs in children have been addressed and then summarizes the results of studies of primary AEC function in children with and without asthma. There is good evidence that nasal AECs may be a suitable surrogate for the study of certain aspects of bronchial AEC function, although bronchial AECs remain the gold standard for asthma research. There are consistent differences between children with and without asthma for nasal and bronchial AEC mediator release following exposure to a range of pro-inflammatory stimulants including interleukins (IL)-1β, IL-4, and IL-13. However, there are inconsistencies between studies, e.g., release of IL-6, an important pro-inflammatory cytokine, is not increased in children with asthma relative to controls in all studies. Future work should expand current understanding of the "upstream" signalling pathways in AEC, study AEC from children before the onset of asthma symptoms and in vitro models should be developed that replicate the in vivo status more completely, e.g., co-culture with dendritic cells. AECs are difficult to obtain from children and collaboration between centers is expected to yield meaningful advances in asthma understanding and ultimately help deliver novel therapies. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is one of the most prevalent malignancies worldwide. It consists of a group of tumor cells that have the ability to grow uncontrollably, overcome replicative senescence (tumor progression) and metastasize within the body. Metastases are processes that consist of an array of complex gene dysregulation events. Although these processes are still not fully understood, the dysregulation of a number of key proteins must take place if the tumor cells are to disseminate and metastasize. It is now widely accepted that future effective and innovative treatments of cancer metastasis will have to encompass all the major components of malignant transformation. For this reason, much research is now being carried out into the mechanisms that govern the malignant transformation processes. Recent research has identified key genes involved in the development of metastases, as well as their mechanisms of action. A detailed understanding of the encoded proteins and their interrelationship generates the possibility of developing novel therapeutic approaches. This review will focus on a select group of proteins, often deregulated in breast cancer metastasis, which have shown therapeutic promise, notably, EMT, E-cadherin, Osteopontin, PEA3, Transforming Growth Factor Beta (TGF-β) and Ran.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is widely accepted that silicon-substituted materials enhance bone formation, yet the mechanism by which this occurs is poorly understood. This work investigates the potential of using diatom frustules to answer on fundamental questions surrounding the role of silica in bone healing. Biosilica with frustules 20m were isolated from Cyclotella meneghiniana a unicellular microalgae that was sourced from the Mississippi River, USA. Silanisation chemistry was used to modify the surface of C. meneghiniana with amine (–NH2) and thiol (–SH) terminated silanes. Untreated frustules and both functionalised groups were soaked in culture medium for 24hrs. Following the culture period, frustules were separated from the conditioned medium by centrifugation and both were tested separately in vitro for cytotoxicity using murine-monocyte macrophage (J774) cell line. Cytotoxicity was measured using LDH release to measure damage to cell membrane, MTS to measure cell viability and live-dead staining. The expression and release of pro-inflammatory cytokines (IL-6 and TNF) were measured using ELISA. Our results found that diatom frustules and those functionalised with amino groups showed no cytotoxicity or elevated cytokine release. Diatom frustules functionalised with thiol groups showed higher levels of cytotoxicity. Diatom frustules and those functionalised with amino groups were taken forward to an in vivo mouse toxicity model, whereby the immunological response, organ toxicity and route of metabolism/excretion of silica were investigated. Histological results showed no organ toxicity in any of the groups relative to control. Analysis of blood Si levels suggests that modified frustules are metabolised quicker than functionalised frustules, suggesting that physiochemical attributes influence their biodistribution. Our results show that diatom frustules are non cytotoxic and are promising materials to better understand the role of silica in bone healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interferon-alpha (IFN-alpha) therapy is commonly used in the treatment of neoplastic and autoimmune diseases, including cutaneous T cell lymphoma (CTCL). However, the IFN-alpha response is unpredictable, and the IFN-alpha cell targets and pathways are only partially understood. To delineate the molecular mechanisms of IFN-alpha activity, gene expression profiling was performed in a time-course experiment of both IFN-alpha sensitive and IFN-alpha-resistant variants of a CTCL cell line. These experiments revealed that IFN-alpha is responsible for the regulation of hundreds of genes in both variants and predominantly involves genes implicated in signal transduction, cell cycle control, apoptosis, and transcription regulation. Specifically, the IFN-alpha response of tumoral T cells is due to a combination of induction of apoptosis in which TNFSF10 and HSXIAPAF1 may play an important role and cell cycle arrest achieved by downregulation of CDK4 and CCNG2 and upregulation of CDKN2C and tumor suppressor genes (TSGs). Resistance to IFN-alpha appears to be associated with failure to induce IRF1 and IRF7 and deregulation of the apoptotic signals of HSXIAPAF1, TRADD, BAD, and BNIP3. Additionally, cell cycle progression is heralded by upregulation of CDC25A and CDC42. A critical role of NF-kappaB in promoting cell survival in IFN-alpha-resistant cells is indicated by the upregulation of RELB and LTB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many sequelae associated with endotoxaemic-induced shock result from excessive production of the cytokine mediators, tumour necrosis factor alpha (TNF-alpha), interleukin 1 (IL-1) and IL-6 from lipopolysaccharide (LPS)-activated monocytes. Protein C (PC)/activated protein C (APC) has potent cytokine-modifying properties and is protective in animal models and human clinical trials of sepsis. The precise mechanism by which this anti-inflammatory response is achieved remains unknown; however, the recently described endothelial protein C receptor (EPCR) appears to be essential for this function. The pivotal role that monocytes play in the pathophysiology of septic shock led us to investigate the possible expression of a protein C receptor on the monocyte membrane. We used similarity algorithms to screen human sequence databases for paralogues of the EPCR but found none. However, using reverse transcription-polymerase chain reaction (RT-PCR), we detected an mRNA transcribed in primary human monocytes and THP1 cells that was identical to human EPCR mRNA. We also used immunocytochemical analysis to demonstrate the expression of a protein C receptor on the surface of monocytes encoded by the same gene as EPCR. These results confirm a new member of the protein C pathway involving primary monocytes. Further characterization will be necessary to compare and contrast its biological properties with those of EPCR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The precise regulatory mechanisms of amplification and downregulation of the pro- and anti-inflammatory cytokines in the inflammatory response have not been fully delineated. Although activated protein C (APC) and its precursor protein C (PC) have recently been reported to be promising therapeutic agents in the management of meningococcal sepsis, direct evidence for the anti-inflammatory effect remains scarce. We report that APC inhibits in vitro the release of tumor necrosis factor (TNF) and macrophage migration inhibitory factor (MIF), two known cytokine mediators of bacterial septic shock, from lipopolysaccharide (LPS)-stimulated human monocytes. The THP-1 monocytic cell line, when stimulated with LPS and concomitant APC, exhibited a marked reduction in the release of TNF and MIF protein in a concentration-dependent manner compared to cells stimulated with LPS alone. This effect was observed only when incubations were performed in serum-free media, but not in the presence of 1-10% serum. Serum-mediated inhibition could only be overcome by increasing APC concentrations to far beyond physiological levels, suggesting the presence of endogenous serum-derived APC inhibitors. Inhibition of MIF release by APC was found to be independent of TNF, as stimulation of MIF release by LPS was unaltered in the presence of anti-TNF antibodies. Our data confirm that the suggested anti-inflammatory properties of APC are due to direct inhibition of the release of the pro-inflammatory monokine TNF, and imply that the anti-inflammatory action of APC is also mediated via inhibition of MIF release.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytokine secretion and degranulation represent key components of CD8(+) T-cell cytotoxicity. While transcriptional blockade of IFN-γ and inhibition of degranulation by TGF-β are well established, we wondered whether TGF-β could also induce immune-regulatory miRNAs in human CD8(+) T cells. We used miRNA microarrays and high-throughput sequencing in combination with qRT-PCR and found that TGF-β promotes expression of the miR-23a cluster in human CD8(+) T cells. Likewise, TGF-β up-regulated expression of the cluster in CD8(+) T cells from wild-type mice, but not in cells from mice with tissue-specific expression of a dominant-negative TGF-β type II receptor. Reporter gene assays including site mutations confirmed that miR-23a specifically targets the 3'UTR of CD107a/LAMP1 mRNA, whereas the further miRNAs expressed in this cluster-namely, miR-27a and -24-target the 3'UTR of IFN-γ mRNA. Upon modulation of the miR-23a cluster by the respective miRNA antagomirs and mimics, we observed significant changes in IFN-γ expression, but only slight effects on CD107a/LAMP1 expression. Still, overexpression of the cluster attenuated the cytotoxic activity of antigen-specific CD8(+) T cells. These functional data thus reveal that the miR-23a cluster not only is induced by TGF-β, but also exerts a suppressive effect on CD8(+) T-cell effector functions, even in the absence of TGF-β signaling.