995 resultados para Creative Commons Copyright
Resumo:
Within Canada there are more than 2.5 million bundles of spent nuclear fuel with another approximately 2 million bundles to be generated in the future. Canada, and every country around the world that has taken a decision on management of spent nuclear fuel, has decided on long-term containment and isolation of the fuel within a deep geological repository. At depth, a deep geological repository consists of a network of placement rooms where the bundles will be located within a multi-layered system that incorporates engineered and natural barriers. The barriers will be placed in a complex thermal-hydraulic-mechanical-chemical-biological (THMCB) environment. A large database of material properties for all components in the repository are required to construct representative models. Within the repository, the sealing materials will experience elevated temperatures due to the thermal gradient produced by radioactive decay heat from the waste inside the container. Furthermore, high porewater pressure due to the depth of repository along with possibility of elevated salinity of groundwater would cause the bentonite-based materials to be under transient hydraulic conditions. Therefore it is crucial to characterize the sealing materials over a wide range of thermal-hydraulic conditions. A comprehensive experimental program has been conducted to measure properties (mainly focused on thermal properties) of all sealing materials involved in Mark II concept at plausible thermal-hydraulic conditions. The thermal response of Canada’s concept for a deep geological repository has been modelled using experimentally measured thermal properties. Plausible scenarios are defined and the effects of these scenarios are examined on the container surface temperature as well as the surrounding geosphere to assess whether they meet design criteria for the cases studied. The thermal response shows that if all the materials even being at dried condition, repository still performs acceptably as long as sealing materials remain in contact.
Resumo:
One of the global phenomena with threats to environmental health and safety is artisanal mining. There are ambiguities in the manner in which an ore-processing facility operates which hinders the mining capacity of these miners in Ghana. These problems are reviewed on the basis of current socio-economic, health and safety, environmental, and use of rudimentary technologies which limits fair-trade deals to miners. This research sought to use an established data-driven, geographic information (GIS)-based system employing the spatial analysis approach for locating a centralized processing facility within the Wassa Amenfi-Prestea Mining Area (WAPMA) in the Western region of Ghana. A spatial analysis technique that utilizes ModelBuilder within the ArcGIS geoprocessing environment through suitability modeling will systematically and simultaneously analyze a geographical dataset of selected criteria. The spatial overlay analysis methodology and the multi-criteria decision analysis approach were selected to identify the most preferred locations to site a processing facility. For an optimal site selection, seven major criteria including proximity to settlements, water resources, artisanal mining sites, roads, railways, tectonic zones, and slopes were considered to establish a suitable location for a processing facility. Site characterizations and environmental considerations, incorporating identified constraints such as proximity to large scale mines, forest reserves and state lands to site an appropriate position were selected. The analysis was limited to criteria that were selected and relevant to the area under investigation. Saaty’s analytical hierarchy process was utilized to derive relative importance weights of the criteria and then a weighted linear combination technique was applied to combine the factors for determination of the degree of potential site suitability. The final map output indicates estimated potential sites identified for the establishment of a facility centre. The results obtained provide intuitive areas suitable for consideration
Resumo:
Thermal and fatigue cracking are the two of the major pavement distress phenomena that contribute significantly towards increased premature pavement failures in Ontario. This in turn puts a massive burden on the provincial budgets as the government spends huge sums of money on the repair and rehabilitation of roads every year. Governments therefore need to rethink and re-evaluate their current measures in order to prevent it in future. The main objectives of this study include: the investigation of fatigue distress of 11 contract samples at 10oC, 15oC, 20oC and 25oC and the use of crack-tip-opening-displacement (CTOD) requirements at temperatures other than 15oC; investigation of thermal and fatigue distress of the comparative analysis of 8 Ministry of Transportation (MTO) recovered and straight asphalt samples through double-edge-notched-tension test (DENT) and extended bending beam rheometry (EBBR); chemical testing of all samples though X-ray Fluorescence (XRF) and Fourier transform infrared analysis (FTIR); Dynamic Shear Rheometer (DSR) higher and intermediate temperature grading; and the case study of a local Kingston road. Majority of 11 contract samples showed satisfactory performance at all temperatures except one sample. Study of CTOD at various temperatures found a strong correlation between the two variables. All recovered samples showed poor performance in terms of their ability to resist thermal and fatigue distress relative to their corresponding straight asphalt as evident in DENT test and EBBR results. XRF and FTIR testing of all samples showed the addition of waste engine oil (WEO) to be the root cause of pavement failures. DSR high temperature grading showed superior performance of recovered binders relative to straight asphalt. The local Kingston road showed extensive signs of damage due to thermal and fatigue distress as evident from DENT test, EBBR results and pictures taken in the field. In the light of these facts, the use of waste engine oil and recycled asphalt in pavements should be avoided as these have been shown to cause premature failure in pavements. The DENT test existing CTOD requirements should be implemented at other temperatures in order to prevent the occurrences of premature pavement failures in future.
Resumo:
Background: Primary care is the sector of health care in which patients first establish contact with the health system, are provided person-focused care over time for all new or common needs, and receive coordinated integrated health services provided elsewhere by other members of the health care team. Registered Nurses (RNs) in Canada provide care within this sector in varying roles. The extent to which RNs enact their full scope of practice in primary care settings in Canada is not known. The Actual Scope of Practice questionnaire (ASCOP) is a 26 item Likert scale questionnaire developed by researchers in Canada and validated in the acute care setting to measure the extent to which RNs apply the knowledge, skills and competencies of the professional full scope of practice. Similar to the acute care setting, there is a need to measure scope of practice enactment in the primary care setting. Objectives: The overall aim of this thesis was to measure scope of practice enactment in the primary care setting. Two research objectives were addressed: (1) to revise and adapt the ASCOP questionnaire for use in the primary care setting, and (2) to determine internal consistency, construct validity, and sensitivity of the modified instrument, the ASCOP-PC. Methods: To address the first objective, a narrative literature review and synthesis and an expert panel review was conducted. To address the second objective a cross-sectional survey of 178 RNs working in primary care organizations in Ontario was conducted Results: The ASCOP, with few modifications, addressed key attributes of nursing scope of practice in the primary care setting. The ASCOP-PC yielded acceptable alpha coefficients ranging from 0.66 to 0.91 and explained variances from 44.2 to 62.6. Total mean score of 5.16 suggests that RNs within these models of care almost always engage in activities reflected in the ASCOP-PC. Interpretation: Findings from this study support the use of a the modified ASCOP questionnaire as a reliable and valid measure of scope of practice enactment among primary care nurses in the primary care setting.
Resumo:
Persistent genital arousal disorder (PGAD) is characterized by physiological sexual arousal (vasocongestion, sensitivity of the genitals and nipples) that is described as distressing, and sometimes painful. Although awareness of PGAD is growing, there continues to be a lack of systematic research on this condition. The vast majority of published reports are case studies. Little is known about the symptom characteristics, biological factors, or psychosocial functioning associated with the experience of persistent genital arousal (PGA) symptoms. This study sought to characterize a sample of women with PGA (Study One); compare women with and without PGA symptoms on a series of biopsychosocial factors (Study Two); and undertake an exploratory comparison of women with PGA, painful PGA, and genital pain (Study Three)—all within a biopsychosocial framework. Symptom-free women, women with PGA symptoms, painful PGA, and genital pain, completed an online survey of biological factors (medical history, symptom profiles), psychological factors (depression, anxiety) and social factors (sexual function, relationship satisfaction). Study One found that women report diverse symptoms associated with PGA, with almost half reporting painful symptoms. In Study Two, women with symptoms of PGA reported significantly greater impairment in most domains of psychosocial functioning as compared to symptom-free women. In particular, catastrophizing of vulvar sensations was related to symptom ratings (i.e., greater severity, distress) and psychosocial outcomes (i.e., greater depression and anxiety). Finally, Study Three found that women with PGA symptoms reported some overlap in medical comorbidities and symptom expression as those with combined PGA and vulvodynia and those with vulvodynia symptoms alone; however, there were also a number of significant differences in their associated physical symptoms. These studies indicate that PGA symptoms have negative consequences for the psychosocial functioning of affected women. As such, future research and clinical care may benefit from a biopsychosocial approach to PGA symptoms. These studies highlight areas for more targeted research, including the role of catastrophizing in PGA symptom development and maintenance, and the potential conceptualization of both PGA and vulvodynia (and potentially other conditions) under a general umbrella of ‘genital paraesthesias’ (i.e., disorders characterized by abnormal sensations, such as tingling and burning).
Resumo:
A functional nervous system requires the precise arrangement of all nerve cells and their neurites. To achieve this correct assembly, a myriad of molecular guidance cues works together to direct the outgrowth of neurites to their correct positions. The small nematode C. elegans provides the ideal model system to study the complex mechanisms of neurite guidance due to its relatively simple nervous system, composed of 302 neurons. I used two mechanosensory neurons, called the posterior lateral microtubule (PLM), to investigate the role of the ephrin and Eph receptor protein family in neurite termination in C. elegans. Activation of the C. elegans Eph receptor VAB-1 on the PLM growth cone is sufficient to cause PLM termination, but the identity and location of the activating ligand has not been established. In my thesis I investigated the ability of the ephrin ligand EFN-1 to activate VAB-1 to cause PLM termination when expressed on the same cell (in cis) and on opposing cells (in trans) to the receptor. I showed that EFN-1 is able to activate VAB-1 in cis and in trans to cause PLM termination. I also assessed the hypodermal seam cells as the source of the ephrin stop cue using fluorescently labelled and seam cell mutant transgenic worms. I found that although the PLM shows consistent termination on the seam cell V2 in wild type worms independent of PLM length, this process is not significantly disrupted in seam cell mutants. With this information I have created a new hypothesis that the PLM neurite is able the provide a positional cue for the developing seam cells, and have created a new transgenic strain which can be used to assess the impact of PLM and ALM cell ablation on seam cell position. My research is the first to demonstrate the ability of an ephrin ligand to activate its ephrin receptor in cis, and further research can investigate if this finding has in vivo applications.
Resumo:
There is a large degree of heterogeneity in response to regular physical activity at the individual level, with some exhibiting no or very small improvements in VO2peak following highly controlled exercise training. The purpose of this thesis was to examine individual variation in VO2peak response to sprint interval training (SIT) in relation to individual responses to multiple measures of peripheral physiological adaptation. Specifically, VO2peak, capillary density, fibre-specific SDH content, and type I fibre % were measured in 23 young, healthy, recreationally active males before and after 4 weeks SIT (Tabata protocol 4 x per week). The key findings of this experiment included that, when separated into tertiles of VO2peak response, the high (HI) and low (LO) groups differed significantly in VO2peak change after training. Secondly, there was no difference between HI and LO groups for response in any of capillary density, fibre-specific SDH content, or fibre type %, with no correlation found between individual VO2peak response and changes in any measured peripheral variable. Together, these results confirm that individuals respond heterogeneously to SIT and suggest that this heterogeneity does not result from differences in individual changes in capillary density, fibre-specific SDH content or type I fibre %. It is speculated that some other combination of peripheral physiological adaptation must explain variability in VO2peak response to 4 weeks of SIT.
Resumo:
Large calcareous eolianites cover the remote island of Bermuda, accounting for more than 90% of the limestone bedrock. This study examines the sedimentology and geochemistry of these eolianites to better understand Pleistocene oceanography and the meteoric alteration of subtropical carbonate sediments. Cluster analyses reveal that the eolian carbonate sediments fall into two natural groups that represent lagoonal and reefal end members of marine sediment production. Coral fragments are uncharacteristically absent, possibly destroyed prior to their incorporation into eolian deposits by endolithic microboring organisms or broken up during transport. Sediment assemblages lead to the following interpretations of the Bermudan offshore environment: (1) the Ledge Flats reef system along the southwestern coast has been active since MIS 11, contributing coralline algal-rich sediment to the northern beaches of Sandy’s Parish and acting as an energy barrier in the south, allowing for low energy sedimentation in the quiet back- reef region; (2) on the northeastern coast, the low energy back-reef region landward of the Ledge Flats has thrived since MIS 11; (3) during MIS 5e, slightly warmer water temperatures led to the hindrance of coralline algal growth along the southern coast and in the North Lagoon. These are the first interpretations of Pleistocene marine assemblages on Bermuda. Meteoric fluids progressively transformed the pristine carbonate sediments into hardened limestones in a predictable solubility-dependent manner. The progressive alteration is coincident with: (1) divergence of δ18O and δ13C values from those similar to unaltered sediment towards those of calcrete, due to interaction with CO2-charged meteoric fluids; (2) depletion of elements with low partitioning coefficients and low meteoric concentrations, such as barium, boron, magnesium, potassium, sodium, strontium, and uranium; (3) enrichment of iron from Terra Rossa-hosted iron oxides; (4) enrichment of aluminum via detrital minerals sourced from protosol horizons; and (5) manganese concentrations that remain uncharacteristically low, owing to the lack of a consistent manganese source. Elemental correlations are useful for characterizing meteoric diagenesis, assuming the primary mineralogy is recognized, all components have been fully altered, and inter-particle cements are ubiquitous.
Resumo:
With applications ranging from aerospace to biomedicine, additive manufacturing (AM) has been revolutionizing the manufacturing industry. The ability of additive techniques, such as selective laser melting (SLM), to create fully functional, geometrically complex, and unique parts out of high strength materials is of great interest. Unfortunately, despite numerous advantages afforded by this technology, its widespread adoption is hindered by a lack of on-line, real time feedback control and quality assurance techniques. In this thesis, inline coherent imaging (ICI), a broadband, spatially coherent imaging technique, is used to observe the SLM process in 15 - 45 $\mu m$ 316L stainless steel. Imaging of both single and multilayer builds is performed at a rate of 200 $kHz$, with a resolution of tens of microns, and a high dynamic range rendering it impervious to blinding from the process beam. This allows imaging before, during, and after laser processing to observe changes in the morphology and stability of the melt. Galvanometer-based scanning of the imaging beam relative to the process beam during the creation of single tracks is used to gain a unique perspective of the SLM process that has been so far unobservable by other monitoring techniques. Single track processing is also used to investigate the possibility of a preliminary feedback control parameter based on the process beam power, through imaging with both coaxial and 100 $\mu m$ offset alignment with respect to the process beam. The 100 $\mu m$ offset improved imaging by increasing the number of bright A-lines (i.e. with signal greater than the 10 $dB$ noise floor) by 300\%. The overlap between adjacent tracks in a single layer is imaged to detect characteristic fault signatures. Full multilayer builds are carried out and the resultant ICI images are used to detect defects in the finished part and improve upon the initial design of the build system. Damage to the recoater blade is assessed using powder layer scans acquired during a 3D build. The ability of ICI to monitor SLM processes at such high rates with high resolution offers extraordinary potential for future advances in on-line feedback control of additive manufacturing.
Resumo:
The walls of blood vessels are lined with a single-cell layer of endothelial cells. As blood flows through the arteries, a frictional force known as shear stress is sensed by mechanosensitive structures on the endothelium. Short and long term changes in shear stress can have a significant influence on the regulation of endothelial function. Acutely, shear stress triggers a pathway that culminates in the release of vasodilatory molecules from the endothelium and subsequent vasodilation of the artery. This endothelial response is known as flow mediated dilation (FMD). FMD is used as an index of endothelial function and is commonly assessed using reactive hyperemia (RH)-FMD, a method which elicits a large, short lived increase in shear stress following the release of a brief (5 min) forearm occlusion. A recent study found that a short term exposure (30 min) to a sustained elevation in shear stress potentiates subsequent RH-FMD. FMD can also result from a more prolonged, sustained increase in shear stress elicited by handgrip exercise (HGEX-FMD). There is evidence to suggest that interventions and conditions impact FMD resulting from sustained and transient shear stress stimuli differently, indicating that HGEX-FMD and RH-FMD provide different information about endothelial function. It is unknown whether HGEX-FMD is improved by short term exposure to shear stress. Understanding how exercise induced FMD is regulated is important because it contributes to blood flow responses during exercise. The study purpose was therefore to assess the impact of a handgrip exercise (intervention) induced sustained elevation in shear stress on subsequent brachial artery (BA) HGEX-FMD. Twenty healthy male participants (22±3yrs) preformed a 30-minute HGEX intervention on two experimental days. BA-FMD was assessed using either an RH or HGEX shear stress stimulus at 3 time points: pre-intervention, 10 min post and 60 min post. FMD and shear stress magnitude were determined via ultrasound. Both HGEX and RH-FMD increased significantly from pre-intervention to 10 min-post (p<0.01). These findings indicate that FMD stimulated by exercise induced increases in shear stress is potentiated by short term shear stress exposure. These findings advance our understanding regarding the regulation of endothelial function by shear stress.
Resumo:
Schedule-Induced Polydipsia (SIP) is an animal model of adjunctive drinking induced when a hungry rat receives food on a fixed interval of time. This model has been implemented as a model of compulsive behaviour and may represent a powerful tool to understand the neural mechanisms of compulsion. The bed nucleus of the stria terminalis (BNST) is thought to translate challenges to energy homeostasis into consummatory behaviours, and is therefore likely to contribute to drinking behaviours displayed by food restricted rats in the SIP paradigm. Furthermore, the BNST seems implicated in various compulsive behaviors, including compulsive water drinking in rats. Therefore, the goal of this project was to determine whether compulsive drinking in the SIP paradigm was associated with alterations in transmission at oval BNST (ovBNST) synapses. Rats undergoing the SIP procedure had restricted food access (1-hours/day) for a total of 29 days. After 7 days of food restriction and for the next 21 consecutive days, the rats had daily 2-hour access to operant conditioning chambers where they were presented with a 45-mg food pellet every minute. Water consumed during these 2-hour sessions was measured and the rats that drank 15 ml or more water for a minimum of 3 consecutive days were considered High Drinkers (HD; n=17) or otherwise, Low Drinkers (LD; n=13). Brain slices whole-cell patch clamp recordings conducted 18-hours after the last SIP training showed that chronic food restriction changed low frequency stimulation (LFS) - induced long-term potentiation of ovBNST inhibitory synaptic transmission (iLTP) into LFS - induced long-term depression (iLTD) in a majority of neurons, regardless of drinking behaviours. However, ad libitum access to food between the last day of SIP training and brain slice recordings (18-hour refeed) rescued LFS-induced iLTP in LD but not in HD, suggesting that impaired bi-directional plasticity of ovBNST synapses may contribute to compulsive drinking in the SIP paradigm.
Resumo:
Bitumen extraction from surface-mined oil sands results in the production of large volumes of Fluid Fine Tailings (FFT). Through Directive 085, the Province of Alberta has signaled that oil sands operators must improve and accelerate the methods by which they deal with FFT production, storage and treatment. This thesis aims to develop an enhanced method to forecast FFT production based on specific ore characteristics. A mass relationship and mathematical model to modify the Forecasting Tailings Model (FTM) by using fines and clay boundaries, as the two main indicators in FFT accumulation, has been developed. The modified FTM has been applied on representative block model data from an operating oil sands mining venture. An attempt has been made to identify order-of-magnitude associated tailings treatment costs, and to improve financial performance by not processing materials that have ultimate ore processing and tailings storage and treatment costs in excess of the value of bitumen they produce. The results on the real case study show that there is a 53% reduction in total tailings accumulations over the mine life by selectively processing only lower tailings generating materials through eliminating 15% of total mined ore materials with higher potential of fluid fines inventory. This significant result will assess the impact of Directive 082 on mining project economic and environmental performance towards the sustainable development of mining projects.
Resumo:
Multi-frequency Eddy Current (EC) inspection with a transmit-receive probe (two horizontally offset coils) is used to monitor the Pressure Tube (PT) to Calandria Tube (CT) gap of CANDU® fuel channels. Accurate gap measurements are crucial to ensure fitness of service; however, variations in probe liftoff, PT electrical resistivity, and PT wall thickness can generate systematic measurement errors. Validated mathematical models of the EC probe are very useful for data interpretation, and may improve the gap measurement under inspection conditions where these parameters vary. As a first step, exact solutions for the electromagnetic response of a transmit-receive coil pair situated above two parallel plates separated by an air gap were developed. This model was validated against experimental data with flat-plate samples. Finite element method models revealed that this geometrical approximation could not accurately match experimental data with real tubes, so analytical solutions for the probe in a double-walled pipe (the CANDU® fuel channel geometry) were generated using the Second-Order Vector Potential (SOVP) formalism. All electromagnetic coupling coefficients arising from the probe, and the layered conductors were determined and substituted into Kirchhoff’s circuit equations for the calculation of the pickup coil signal. The flat-plate model was used as a basis for an Inverse Algorithm (IA) to simultaneously extract the relevant experimental parameters from EC data. The IA was validated over a large range of second layer plate resistivities (1.7 to 174 µΩ∙cm), plate wall thickness (~1 to 4.9 mm), probe liftoff (~2 mm to 8 mm), and plate-to plate gap (~0 mm to 13 mm). The IA achieved a relative error of less than 6% for the extracted FP resistivity and an accuracy of ±0.1 mm for the LO measurement. The IA was able to achieve a plate gap measurement with an accuracy of less than ±0.7 mm error over a ~2.4 mm to 7.5 mm probe liftoff and ±0.3 mm at nominal liftoff (2.42±0.05 mm), providing confidence in the general validity of the algorithm. This demonstrates the potential of using an analytical model to extract variable parameters that may affect the gap measurement accuracy.
Resumo:
This study examines how one secondary school teacher’s use of purposeful oral mathematics language impacted her students’ language use and overall communication in written solutions while working with word problems in a grade nine academic mathematics class. Mathematics is often described as a distinct language. As with all languages, students must develop a sense for oral language before developing social practices such as listening, respecting others ideas, and writing. Effective writing is often seen by students that have strong oral language skills. Classroom observations, teacher and student interviews, and collected student work served as evidence to demonstrate the nature of both the teacher’s and the students’ use of oral mathematical language in the classroom, as well as the effect the discourse and language use had on students’ individual written solutions while working on word problems. Inductive coding for themes revealed that the teacher’s purposeful use of oral mathematical language had a positive impact on students’ written solutions. The teacher’s development of a mathematical discourse community created a space for the students to explore mathematical language and concepts that facilitated a deeper level of conceptual understanding of the learned material. The teacher’s oral language appeared to transfer into students written work albeit not with the same complexity of use of the teacher’s oral expression of the mathematical register. Students that learn mathematical language and concepts better appear to have a growth mindset, feel they have ownership over their learning, use reorganizational strategies, and help develop a discourse community.
Resumo:
This thesis engages black critical thought on the human and its contemporary iterations in posthumanism and transhumanism. It articulates five categories of analysis: displace, interrupt, disrupt, expand, and wither. Each is meant to allude to the generative potential in different iterations of black thought that engages the human. Working through Sylvia Wynter’s theories of the rise of Man-as-human in particular, the project highlights how black thought on the human displaces the uncritical whiteness of posthumanist thought. It argues that Afrofuturism has the potential to interrupt the linear progression from human to posthuman and that Octavia Butler’s Fledgling proffers a narrative of race as a technology that disrupts the presumed post-raciality of posthumanism and transhumanism. It then contends that Katherine McKittrick’s rearticulation of the Promise of Science can be extended to incorporate the promise of science fiction. In so doing, it avers that a more curated conversation between McKittrick and Wynter, one already ongoing, and Octavia Butler, through Mind of My Mind from her Patternist series, expands our notions of the human as a category even at the risk of seeing it wither as a politic or praxis. It ends on a speculative note meant to imagine the possibilities within the promise of science fiction.