999 resultados para Cr : Yb : YAG crystal
Resumo:
1847/07/01 (A12).
Resumo:
[Acte. 1730-10-25]
Resumo:
Archivo Fotográfico
Resumo:
Archivo Fotográfico
Resumo:
Archivo Fotográfico
Resumo:
Archivo Fotográfico
Resumo:
Archivo Fotográfico
Resumo:
Archivo Fotográfico
Resumo:
The far infrared reflectance of Sb2Te3 , Sbi.97Vo.o3Te3 and Sbi.94Cr .o6Te3 was measured near normal incidence at different temperatures (between 45K and 300K). The direct current resistivities of the above samples were also measured between the temperatures of 4K and 300K. Also Kramers Kronig (KK) analyses were performed on the reflectance spectra to obtain the optical conductivities. In the doped samples, it was observed that a phonon at 62cm-1 softens to about 55cm-1 on decreasing the temperature from 295K to 45K. Also, it was observed that the plasma frequency of the doped samples is independent of doping. The scattering rate for the vanadium doped sample was seen to be greater than that for the chromium doped sample despite the fact that vanadium impurity density is less than that of chromium. The Drude-Lorentz model fits to the KK optical conductivity show that the samples used in this work are conventional metals. Definitive measurements of the temperature dependence of the scattering rate across the ferromagnetic transition await equipment changes allowing measurements at low temperature using the mercury cadmium telluride (MCT) detector.
Resumo:
Using the Physical Vapor Transport method, single crystals of Cd2Re207 have been grown, and crystals of dimensions up to 8x6x2 mm have been achieved. X-ray diffraction from a single crystal of Cd2Re207 has showed the crystal growth in the (111) plane. Powder X-ray diffraction measurements were performed on ^^O and ^^O samples, however no difference was observed. Assigning the space group Fd3m to Cd2Re207 at room temperature and using structure factor analysis, the powder X-ray diffraction pattern of the sample was explained through systematic reflection absences. The temperatiure dependence of the resistivity measurement of ^^O has revealed two structural phase transitions at 120 and 200 K, and the superconducting transition at 1.0 K. Using Factor Group Analysis on three different structiures of Cd2Re207, the number of IR and Raman active phonon modes close to the Brillouin zone centre have been determined and the results have been compared to the temperature-dependence of the Raman shifts of ^^O and ^*0 samples. After scaling (via removing Bose-Einstein and Rayleigh scattering factors from the scattered light) all spectra, each spectrum was fitted with a number of Lorentzian peaks. The temperature-dependence of the FWHM and Raman shift of mode Eg, shows the effects of the two structurjil phase transitions above Tc. The absolute reflectance of Cd2Re207 - '^O single crystals in the far-infrared spectral region (7-700 cm~^) has been measured in the superconducting state (0.5 K), right above the superconducting state (1.5 K), and in the normal state (4.2 K). Thermal reflectance of the sample at 0.5 K and 1.5 K indicates a strong absorption feature close to 10 cm~^ in the superconducting state with a reference temperature of 4.2 K. By means of Kramers-Kronig analysis, the absolute reflectance was used to calculate the optical conductivity and dielectric function. The real part of optical conductivity shows five distinct active phonon modes at 44, 200, 300, 375, and 575 cm~' at all temperatures including a Drude-like behavior at low frequencies. The imaginary part of the calculated dielectric function indicates a mode softening of the mode 44 cm~' below Tc.
Resumo:
The Lennard-Jones Devonshire 1 (LJD) single particle theory for liquids is extended and applied to the anharmonic solid in a high temperature limit. The exact free energy for the crystal is expressed as a convergent series of terms involving larger and larger sets of contiguous particles called cell-clusters. The motions of all the particles within cell-clusters are correlated to each other and lead to non-trivial integrals of orders 3, 6, 9, ... 3N. For the first time the six dimensional integral has been calculated to high accuracy using a Lennard-Jones (6-12) pair interaction between nearest neighbours only for the f.c.c. lattice. The thermodynamic properties predicted by this model agree well with experimental results for solid Xenon.
Resumo:
The Bi2Sr2CaCu20g single crystal with a superconducting transition temperature equal to 90 ± 2 K was prepared. The irreversibility line of the single crystal for a mgnetic field direction along the c-axis and T* in the ab-plane was determined. The reduced temperature (l - T ) is proportional to H 1.1 for fields below 004 T and proportional to HO.09 for fields above 0.4 T. The zero temperature upper critical field Hc2(0) and coherence length ~ (0) were determined from the magnetization meaurements to be H-lC2=35.9T , H//C2=31.2T, ~c(0)=35.0 A, and ~ab(0)=32.5A,and from the magnetoresistance measurements to be H-lc2 = 134.6T , H//C2=55.5T '~c(0)=38.1 A, and ~ab(0)=2404 A for both directions of the applied magnetic field. The results obtained for Hc2(0) and ~(O) are not reliable due to the rounding that the single crystal exhibits in the magnetization and magnetoresistance curves. The magnetization relaxation of the single crystal was investigated, and was found to be logarithmic in time, and the relaxation rate increases with temperature up to 50 -60 K, then decreases at higher temperatures.
Resumo:
Thesis (M. Sc.) - Brock University, 1978.
Resumo:
The crystal structure of Cu(PM)2(N03hoH20 (where PM is pyridoxamine, CSHI2N202) has been determined from three dimensional x-ray diffraction data. The crystals are triclinic, space group pI, a = 14.248 (2), b = 8.568 (1), c = 9.319 (1) 1, a = 94.08 (1), e = 89.73 (1), y~~ 99.18 (1)°, z = 2, jl(MoK) = 10.90 em-I, Po = 1.61 g/cm3 and Pc = 1.61 g/em3• The structure a was solved by Patterson techniques from data collected on a Picker 4-circle diffractometer to 26max = 45°. All atoms, including hydrogens, have been located. Anisotropic thermal parameters have been refined for all nonhydrogen atoms. For the 2390 independent reflections with F ? 3cr(F) , R = 0.0408. The results presented here provide the first detailed structural information of a metal complex with PM itself. The copper atoms are located on centres of symmetry and each is chela ted by two PM zwitterions through the amino groups and phenolate oxygen atoms. The zwitterionic form found in this structure involves the loss of a proton from the phenolate group and protonation of the pyridine ring nitrogen atoms. The two independent Cu(PM)2 moieties are symmetrically bridged by a single oxygen atom from one of the nitrate groups. The second nitrate group is not coordinated to the copper atoms but is central to an extensive hydrogen bonding network involving the water molecule and uncoordinated functional groups of PM.