949 resultados para Counting, binocular
Resumo:
Moving cameras are needed for a wide range of applications in robotics, vehicle systems, surveillance, etc. However, many foreground object segmentation methods reported in the literature are unsuitable for such settings; these methods assume that the camera is fixed and the background changes slowly, and are inadequate for segmenting objects in video if there is significant motion of the camera or background. To address this shortcoming, a new method for segmenting foreground objects is proposed that utilizes binocular video. The method is demonstrated in the application of tracking and segmenting people in video who are approximately facing the binocular camera rig. Given a stereo image pair, the system first tries to find faces. Starting at each face, the region containing the person is grown by merging regions from an over-segmented color image. The disparity map is used to guide this merging process. The system has been implemented on a consumer-grade PC, and tested on video sequences of people indoors obtained from a moving camera rig. As can be expected, the proposed method works well in situations where other foreground-background segmentation methods typically fail. We believe that this superior performance is partly due to the use of object detection to guide region merging in disparity/color foreground segmentation, and partly due to the use of disparity information available with a binocular rig, in contrast with most previous methods that assumed monocular sequences.
Resumo:
Under natural viewing conditions, a single depthful percept of the world is consciously seen. When dissimilar images are presented to corresponding regions of the two eyes, binocular rivalyr may occur, during which the brain consciously perceives alternating percepts through time. How do the same brain mechanisms that generate a single depthful percept of the world also cause perceptual bistability, notably binocular rivalry? What properties of brain representations correspond to consciously seen percepts? A laminar cortical model of how cortical areas V1, V2, and V4 generate depthful percepts is developed to explain and quantitatively simulate binocualr rivalry data. The model proposes how mechanisms of cortical developement, perceptual grouping, and figure-ground perception lead to signle and rivalrous percepts. Quantitative model simulations include influences of contrast changes that are synchronized with switches in the dominant eye percept, gamma distribution of dominant phase durations, piecemeal percepts, and coexistence of eye-based and stimulus-based rivalry. The model also quantitatively explains data about multiple brain regions involved in rivalry, effects of object attention on switching between superimposed transparent surfaces, and monocular rivalry. These data explanations are linked to brain mechanisms that assure non-rivalrous conscious percepts. To our knowledge, no existing model can explain all of these phenomena.
Resumo:
Under natural viewing conditions, a single depthful percept of the world is consciously seen. When dissimilar images are presented to corresponding regions of the two eyes, binocular rivalry may occur, during which the brain consciously perceives alternating percepts through time. Perceptual bistability can also occur in response to a single ambiguous figure. These percepts raise basic questions: What brain mechanisms generate a single depthful percept of the world? How do the same mechanisms cause perceptual bistability, notably binocular rivalry? What properties of brain representations correspond to consciously seen percepts? How do the dynamics of the layered circuits of visual cortex generate single and bistable percepts? A laminar cortical model of how cortical areas V1, V2, and V4 generate depthful percepts is developed to explain and quantitatively simulate binocular rivalry data. The model proposes how mechanisms of cortical development, perceptual grouping, and figure-ground perception lead to single and rivalrous percepts.
Resumo:
Dissertation