982 resultados para Conserved karyotype


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A few simple three-atom thermoneutral radical exchange reactions (i.e. A + BC --> AB + C) are examined by ab initio SCF methods. Emphasis is laid on the detailed analysis of density matrices rather than on energetics. Results reveal that the sum of the bond orders of the breaking and forming bonds is not conserved to unity, due to development of free valence on the migrating atom 'B' in the transition state. Bond orders, free valence and spin densities on the atoms are calculated. The present analysis shows that the bond-cleavage process is always more advanced than the bond-formation process in the transition state. Further analysis shows a development of the negative spin density on the migrating atom 'B' in the transition state. The depletion of the alpha-spin density on the radical site "A" in the reactant during the reaction lags behind the growth of the alpha-spin density on the terminal atom "C" of the reactant bond, 'B-C' in the transition state. But all these processes are completed simultaneously at the end of the reaction. Hence, the reactions are asynchronous but kinetically concerted in most cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coat protein of belladonna mottle virus (a tymovirus) was cleaved by trypsin and chymotrypsin, and the peptides were separated by high performance liquid chromatography using a combination of gel permeation, reverse phase, and ion pair chromatography. The peptides were sequenced manually using the 4-N, N-dimethylaminoazobenzene-4'-isothiocyanate/phenyl isothiocyanate double-coupling method. The chymotryptic peptides were aligned by overlapping sequences of tryptic peptides and by homology with another tymovirus, eggplant mosaic virus. The belladonna mottle virus is more closely related to eggplant mosaic virus than to turnip yellow mosaic virus, the type member of this group, as evident from the sequence homologies of 57 and 32%, respectively. The accumulation of basic residues at the amino terminus implicated in RNA-protein interactions in many spherical plant viruses was absent in all the three sequences. Interestingly, the amino-terminal region is the least conserved among the tymoviruses. The longest stretch of conserved sequence between belladonna mottle virus and eggplant mosaic virus was residues 34-44, whereas it was residues 96-102 in the case of belladonna mottle virus and turnip yellow mosaic virus. A tetrapeptide in the region (residues 154-157) was found to be common for all the three sequences. It is possible that these conserved regions (residues 34-44, 96-102, 154-157) are involved in either intersubunit or RNA-protein interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structures of two dehydropentapeptides, Boc-Pro-Delta Phe-Val-Delta Phe-Ala-OMe (I) and Boc-Pro-Delta Phe-Gly-Delta Phe-Ala-OMe (II) (Boc: t-butoxycarbonyl), have been determined by nuclear magnentic resonance (NMR), circular dichroism (CD), and X-ray, crystallographic studies. The peptide I assumes a S-shaped flat beta-bend structure, characterized by two partially overlapping type II beta-bends and absence of a second 1 <- 4 (N4-H center dot center dot center dot O1') intramolecular hydrogen bond. This is in contrast to the generally observed 3(10)-helical conformation in peptides with Delta Phe at alternate positions. This report describes the novel conformation assumed by peptide I and compares it with that of the conserved tip of the V3 loop of the HIV-1 envelope glycoprotein gp120 (sequence, G:P319 to F:P324, PDB code IACY). The tip of the V3 loop also assumes a S-shaped conformation with Arg:P322, making an intramolecular side-chain-backbone interaction with the carbonyl oxygen of Gly:P319. Interestingly, in peptide I, C(gamma)HVal(3) makes a similar side-chain-backbone C-H center dot center dot center dot O hydrogen bond with the carbonyl oxygen of the Boc group. The observed overall similarity indicates the possible use of the peptide as a viral antagonist or synthetic antigen. Peptide 11 adopts a unique turn followed by a 3(10)-helix. Both peptides I and II are classical examples of stabilization of unusual structures in oligopeptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Influenza HA is the primary target of neutralizing antibodies during infection, and its sequence undergoes genetic drift and shift in response to immune pressure. The receptor binding HA1 subunit of HA shows much higher sequence variability relative to the metastable, fusion-active HA2 subunit, presumably because neutralizing antibodies are primarily targeted against the former in natural infection. We have designed an HA2-based immunogen using a protein minimization approach that incorporates designed mutations to destabilize the low pH conformation of HA2. The resulting construct (HA6) was expressed in Escherichia coli and refolded from inclusion bodies. Biophysical studies and mutational analysis of the protein indicate that it is folded into the desired neutral pH conformation competent to bind the broadly neutralizing HA2 directed monoclonal 12D1, not the low pH conformation observed in previous studies. HA6 was highly immunogenic in mice and the mice were protected against lethal challenge by the homologous A/HK/68 mouse-adapted virus. An HA6-like construct from another H3 strain (A/Phil/2/82) also protected mice against A/HK/68 challenge. Regions included in HA6 are highly conserved within a subtype and are fairly well conserved within a clade. Targeting the highly conserved HA2 subunit with a bacterially produced immunogen is a vaccine strategy that may aid in pandemic preparedness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The outer domain (OD) of the HIV-1 envelope glycoprotein gp120 is an important target for vaccine design as it contains a number of conserved epitopes, including a large fraction of the CD4 binding site.Attempts to design OD-based immunogens in the past have met with little success. We report the design and characterization of an Escherichia coli-expressed OD-based immunogen (ODEC), based on the sequence of the HxBc2 strain. The ODEC-designed immunogen lacks the variable loops V1V2 and V3 and incorporates 11 designed mutations at the interface of the inner and the outer domains of gp120. Biophysical studies showed that ODEC is folded and protease-resistant, whereas ODEC lacking the designed mutations is highly aggregation-prone. In contrast to previously characterized OD constructs, ODEC bound CD4 and the broadly neutralizing antibody b12 but not the non-neutralizing antibodies b6 and F105. Upon immunization in rabbits, ODEC was highly immunogenic,and the sera showed measurable neutralization for four subtype B and one subtype C virus including two b12-resistant viruses. In contrast,sera from rabbits immunized with gp120 did not neutralize any of the viruses. ODEC is the first example of a gp120 fragment-based immunogen that yields significant neutralizing antibodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study identified the molecular defects underlying three lethal fetal syndromes. Lethal Congenital Contracture Syndrome 1 (LCCS1, MIM 253310) and Lethal Arthrogryposis with Anterior Horn Cell Disease (LAAHD, MIM 611890) are fetal motor neuron diseases. They affect the nerve cells that control voluntary muscle movement, and eventually result in severe atrophy of spinal cord motor neurons and fetal immobility. Both LCCS1 and LAAHD are caused by mutations in the GLE1 gene, which encodes for a multifunctional protein involved in posttranscriptional mRNA processing. LCCS2 and LCCS3, two syndromes that are clinically similar to LCCS1, are caused by defective proteins involved in the synthesis of inositol hexakisphosphate (IP6), an essential cofactor of GLE1. This suggests a common mechanism behind these fetal motor neuron diseases, and along with accumulating evidence from genetic studies of more late-onset motor neuron diseases such as Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), implicates mRNA processing as a common mechanism in motor neuron disease pathogenesis. We also studied gle1-/- zebrafish in order to investigate whether they would be a good model for studying the pathogenesis of LCCS1 and LAAHD. Mutant zebrafish exhibit cell death in their central nervous system at two days post fertilization, and the distribution of mRNA within the cells of mutant zebrafish differs from controls, encouraging further studies. The third lethal fetal syndrome is described in this study for the first time. Cocoon syndrome (MIM 613630) was discovered in a Finnish family with two affected individuals. Its hallmarks are the encasement of the limbs under the skin, and severe craniofacial abnormalities, including the lack of skull bones. We showed that Cocoon syndrome is caused by a mutation in the gene encoding the conserved helix-loop-helix ubiquitous kinase CHUK, also known as IκB kinase α (IKKα). The mutation results in the complete lack of CHUK protein expression. CHUK is a subunit of the IκB kinase enzyme that inhibits NF-κB transcription factors, but in addition, it has an essential, independent role in controlling keratinocyte differentiation, as well as informing morphogenetic events such as limb and skeletal patterning. CHUK also acts as a tumor suppressor, and is frequently inactivated in cancer. This study has brought significant new information about the molecular background of these three lethal fetal syndromes, as well as provided knowledge about the prerequisites of normal human development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adenylosuccinate synthetase catalyzes a reversible reaction utilizing IMP, GTP and aspartate in the presence of Mg2+ to form adenylosuccinate, GDP and inorganic phosphate. Comparison of similarly liganded complexes of Plasmodium falciparum, mouse and Escherichia coil AdSS reveals H-bonding interactions involving nonconserved catalytic loop residues (Asn429, Lys62 and Thr307) that are unique to the parasite enzyme. Site-directed mutagenesis has been used to examine the role of these interactions in catalysis and structural organization of P. falciparum adenylosuccinate synthetase (PfAdSS). Mutation of Asn429 to Val, Lys62 to Leu and Thr307 to Val resulted in an increase in K-m values for IMP, GTP and aspartate, respectively along with a 5 fold drop in the k(cat) value for N429V mutant suggesting the role of these residues in ligand binding and/or catalysis. We have earlier shown that the glycolytic intermediate, fructose 1,6 bisphosphate, which is an inhibitor of mammalian AdSS is an activator of the parasite enzyme. Enzyme kinetics along with molecular docking suggests a mechanism for activation wherein F16BP seems to be binding to the Asp loop and inducing a conformation that facilitates aspartate binding to the enzyme active site. Like in other AdSS, a conserved arginine residue (Arg155) is involved in dimer crosstalk and interacts with IMP in the active site of the symmetry related subunit of PfAdSS. We also report on the iochemical characterization of the arginine mutants (R155L, R155K and R155A) which suggests that unlike in E. coil AdSS, Arg155 in PfAdSS influences both ligand binding and catalysis. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hantaviruses have a tri-segmented negative-stranded RNA genome. The S segment encodes the nucleocapsid protein (N), M segment two glycoproteins, Gn and Gc, and the L segment the RNA polymerase. Gn and Gc are co-translationally cleaved from a precursor and targeted to the cis-Golgi compartment. The Gn glycoprotein consists of an external domain, a transmembrane domain and a C-terminal cytoplasmic domain. In addition, the S segment of some hantaviruses, including Tula and Puumala virus, have an open reading frame (ORF) encoding a nonstructural potein NSs that can function as a weak interferon antagonist. The mechanisms of hantavirus-induced pathogenesis are not fully understood but it is known that both hemorrhagic fever with renal syndrome (HFRS) and hantavirus (cardio) pulmonary syndrome (HCPS) share various features such as increased capillary permeability, thrombocytopenia and upregulation of TNF-. Several hantaviruses have been reported to induce programmed cell death (apoptosis), such as TULV-infected Vero E6 cells which is known to be defective in interferon signaling. Recently reports describing properties of the hantavirus Gn cytoplasmic tail (Gn-CT) have appeared. The Gn-CT of hantaviruses contains animmunoreceptor tyrosine-based activation motif (ITAM) which directs receptor signaling in immune and endothelial cells; and contain highly conserved classical zinc finger domains which may have a role in the interaction with N protein. More functions of Gn protein have been discovered, but much still remains unknown. Our aim was to study the functions of Gn protein from several aspects: synthesis, degradation and interaction with N protein. Gn protein was reported to inhibit interferon induction and amplication. For this reason, we also carried out projects studying the mechanisms of IFN induction and evasion by hantavirus. We first showed degradation and aggresome formation of the Gn-CT of the apathogenic TULV. It was reported earlier that the degradation of Gn-CT is related to the pathogenicity of hantavirus. We found that the Gn-CT of the apathogenic hantaviruses (TULV, Prospect Hill virus) was degraded through the ubiquitin-proteasome pathway, and TULV Gn-CT formed aggresomes upon treatment with proteasomal inhibitor. Thus the results suggest that degradation and aggregation of the Gn-CT may be a general property of most hantaviruses, unrelated to pathogenicity. Second, we investigated the interaction of TULV N protein and the TULV Gn-CT. The Gn protein is located on the Golgi membrane and its interaction with N protein has been thought to determine the cargo of the hantaviral ribonucleoprotein which is an important step in virus assembly, but direct evidence has not been reported. We found that TULV Gn-CT fused with GST tag expressed in bacteria can pull-down the N protein expressed in mammalian cells; a mutagenesis assay was carried out, in which we found that the zinc finger motif in Gn-CT and RNA-binding motif in N protein are indispensable for the interaction. For the study of mechanisms of IFN induction and evasion by Old World hantavirus, we found that Old World hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 5 -termini of their genomic RNAs are monophosphorylated. DsRNA and tri-phosphorylated RNA are considered to be critical activators of innate immnity response by interacting with PRRs (pattern recognition receptors). We examined systematically the 5´-termini of hantavirus genomic RNAs and the dsRNA production by different species of hantaviruses. We found that no detectable dsRNA was produced in cells infected by the two groups of the old world hantaviruses: Seoul, Dobrava, Saaremaa, Puumala and Tula. We also found that the genomic RNAs of these Old World hantaviruses carry 5´-monophosphate and are unable to trigger interferon induction. The antiviral response is mainly mediated by alpha/beta interferon. Recently the glycoproteins of the pathogenic hantaviruses Sin Nombre and New York-1 viruses were reported to regulate cellular interferon. We found that Gn-CT can inhibit the induction of IFN activation through Toll-like receptor (TLR) and retinoic acid-inducible gene I-like RNA helicases (RLH) pathway and that the inhibition target lies at the level of TANK-binding kinase 1 (TBK-1)/ IKK epislon complex and myeloid differentiation primary response gene (88) (MyD88) / interferon regulatory factor 7 (IRF-7) complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper aims to assess the potential of decentralized bioenergy technologies in meeting rural energy needs and reducing carbon dioxide (CO2) emissions. Decentralized energy planning is carried out for the year 2005 and 2020. Decentralized energy planning model using goal programming technique is applied for different decentralized scales (village to a district) for obtaining the optimal mix of energy resources and technologies. Results show that it is possible to meet the energy requirements of all the services that are necessary to promote development and improve the quality of life in rural areas from village to district scale, by utilizing the locally available energy resources such as cattle dung, leaf litter and woody biomass feedstock from bioenergy plantation on wastelands. The decentralized energy planning model shows that biomass feedstock required at village to district level can even be obtained from biomass conserved by shifting to biogas for cooking. Under sustainable development scenario, the decentralized energy planning model shows that there is negligible emission of CO2, oxide of Sulphur (SOx) and oxide of nitrogen (NOx), even while meeting all the energy needs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the thesis I study various quantum coherence phenomena and create some of the foundations for a systematic coherence theory. So far, the approach to quantum coherence in science has been purely phenomenological. In my thesis I try to answer the question what quantum coherence is and how it should be approached within the framework of physics, the metatheory of physics and the terminology related to them. It is worth noticing that quantum coherence is a conserved quantity that can be exactly defined. I propose a way to define quantum coherence mathematically from the density matrix of the system. Degenerate quantum gases, i.e., Bose condensates and ultracold Fermi systems, form a good laboratory to study coherence, since their entropy is small and coherence is large, and thus they possess strong coherence phenomena. Concerning coherence phenomena in degenerate quantum gases, I concentrate in my thesis mainly on collective association from atoms to molecules, Rabi oscillations and decoherence. It appears that collective association and oscillations do not depend on the spin-statistics of particles. Moreover, I study the logical features of decoherence in closed systems via a simple spin-model. I argue that decoherence is a valid concept also in systems with a possibility to experience recoherence, i.e., Poincaré recurrences. Metatheoretically this is a remarkable result, since it justifies quantum cosmology: to study the whole universe (i.e., physical reality) purely quantum physically is meaningful and valid science, in which decoherence explains why the quantum physical universe appears to cosmologists and other scientists very classical-like. The study of the logical structure of closed systems also reveals that complex enough closed (physical) systems obey a principle that is similar to Gödel's incompleteness theorem of logic. According to the theorem it is impossible to describe completely a closed system within the system, and the inside and outside descriptions of the system can be remarkably different. Via understanding this feature it may be possible to comprehend coarse-graining better and to define uniquely the mutual entanglement of quantum systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to identify the functionally relevant epitopes on chicken riboflavin carrier protein, we have raised monoclonal antibodies to the vitamin carrier. One of these, 6B2C12, was found to interact specifically with a synthetic oligopeptide corresponding to the C-terminal 17 amino acid residues of the chicken egg white riboflavin carrier protein, which is missing in part in the egg yolk riboflavin carrier protein. This epitope is conserved through evolution in mammals including humans. Administration of the ascites fluid of 6B2C12 to pregnant mice intraperitoneally, resulted in the termination of pregnancy indicating that this epitope is involved in or closely associated with the transplacental transport of the vitamin from the maternal circulation to the growing fetus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Signal transduction events often involve transient, yet specific, interactions between structurally conserved protein domains and polypeptide sequences in target proteins. The identification and validation of these associating domains is crucial to understand signal transduction pathways that modulate different cellular or developmental processes. Bioinformatics strategies to extract and integrate information from diverse sources have been shown to facilitate the experimental design to understand complex biological events. These methods, primarily based on information from high-throughput experiments, have also led to the identification of new connections thus providing hypothetical models for cellular events. Such models, in turn, provide a framework for directing experimental efforts for validating the predicted molecular rationale for complex cellular processes. In this context, it is envisaged that the rational design of peptides for protein-peptide binding studies could substantially facilitate the experimental strategies to evaluate a predicted interaction. This rational design procedure involves the integration of protein-protein interaction data, gene ontology, physico-chemical calculations, domain-domain interaction data and information on functional sites or critical residues. Results: Here we describe an integrated approach called ``PeptideMine'' for the identification of peptides based on specific functional patterns present in the sequence of an interacting protein. This approach based on sequence searches in the interacting sequence space has been developed into a webserver, which can be used for the identification and analysis of peptides, peptide homologues or functional patterns from the interacting sequence space of a protein. To further facilitate experimental validation, the PeptideMine webserver also provides a list of physico-chemical parameters corresponding to the peptide to determine the feasibility of using the peptide for in vitro biochemical or biophysical studies. Conclusions: The strategy described here involves the integration of data and tools to identify potential interacting partners for a protein and design criteria for peptides based on desired biochemical properties. Alongside the search for interacting protein sequences using three different search programs, the server also provides the biochemical characteristics of candidate peptides to prune peptide sequences based on features that are most suited for a given experiment. The PeptideMine server is available at the URL: http://caps.ncbs.res.in/peptidemine

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alfavirukset ovat positiivissäkeisiä RNA-viruksia, jotka kuuluvat Togaviridea –heimoon. Alfaviruksia levittävät Aedes –suvun hyttyset ja niitä esiintyy Etelämanteretta lukuunottamatta kaikilla mantereilla. Alfaviruksia on tähän mennessä löydetty 29 lajia ja ne voidaan jakaa uuden ja vanhan maailman viruksiin niiden maantieteellisen esiintyvyyden ja taudinaiheuttamiskyvyn mukaan. Chikunkunyavirus (CHIKV) on yksi vanhan maailman alfaviruksista, jota esiintyy muun muassa Afrikassa ja Aasiassa. Ilmaston lämmettyä se on leviämässä myös eteläiseen Eurooppaan. Ihmisessä se aiheuttaa muun muassa kuumetta, päänsärkyä, ihottumaa ja niveltulehdusta, joka voi kestää useita vuosia ja ne voivat olla hyvinkin kivuliaita. Pienillä lapsilla chikungunya on todettu aiheuttavan myös neurologisia oireita kuten aivotulehdusta. Alfaviruksen genomi koodaa neljää rakenneproteiinia ja neljää replikaatioproteiinia. Replikaatioproteiineista nsP3 sisältää makrodomeeniosan. Makrodomeeniproteiinit ovat eliökunnassa konservoituneita, mutta makrodomeeniproteiinien tarkkaa merkitystä ei vielä tunneta. Makrodomeenien on osoitettu sitovan ADP-riboosia ja sen johdannaisia ja alfaviruksen nsP3-proteiinin on osoitettu olevan tärkeä osa viruksen replikaatiossa. Tutkimuksen tavoitteena oli tutkia makrodomeeniproteiiniin sitoutuvien yhdisteiden käyttöä antiviraalisena yhdisteinä. Tietokonemallinnuksella valittiin antiviraalitutkimuksiin 45 yhdistettä, joiden oletettiin sitoutuvan makrodomeeniproteiiniin. Kilpailevassa sitoutumiskokeessa viisi yhdistettä esti yli 50 % poly-ADP-riboosia (PAR) sitoutumasta MDO1-makrodomeeniproteiiniin, jolla tietokonemallinnus oli tehty. SFV-makrodomeeniproteiinilla tehdyssä kokeessa vain yksi yhdiste esti yli 50 % poly-ADP-riboosin sitoutumisen. SFV-antiviraalikokeessa seitsemällä yhdisteellä inhibitioprosentti oli yli 50 %. Näillä yhdisteillä ei kuitenkaan ollut merkittävää vaikutusta poly-ADP-riboosin sitoutumisen estossa. CHIKV-replikonikokeessa yli 50 % inhibitioprosentti oli viidellä yhdisteellä. Muiden mahdollisia vaikutusmekanismeja tutkittiin selvittämällä estävätkö yhdisteet virusta pääsemästä solun sisään. Tässä kokeessa tutkituista yhdisteistä lähes kaikilla oli vaikutusta viruksen soluun pääsyn estossa. Yleisesti ottaen kyky estää PAR:n sitoutuminen makrodomeeniproteiineihin ja antiviraaliset vaikutukset eivät korreloineet keskenään tutkittavilla yhdisteillä. Vaikka antiviraalista vaikutusta omaavat yhdisteet eivät osoittaneetkaan makrodomeeni-inhibiitiota, työssä löydettiin potentiaalisia antiviraalisia yhdisteitä joiden käyttö viruksen soluun pääsyn estäjinä antaa aihetta jatkotutkimuksille.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mismatch repair (MMR) pathway serves to maintain the integrity of the genome by removing mispaired bases from the newly synthesized strand. In E. coli, MutS, MutL and MutH coordinate to discriminate the daughter strand through a mechanism involving lack of methylation on the new strand. This facilitates the creation of a nick by MutH in the daughter strand to initiate mismatch repair. Many bacteria and eukaryotes, including humans, do not possess a homolog of MutH. Although the exact strategy for strand discrimination in these organisms is yet to be ascertained, the required nicking endonuclease activity is resident in the C-terminal domain of MutL. This activity is dependent on the integrity of a conserved metal binding motif. Unlike their eukaryotic counterparts, MutL in bacteria like Neisseria exist in the form of a homodimer. Even though this homodimer would possess two active sites, it still acts a nicking endonuclease. Here, we present the crystal structure of the C-terminal domain (CTD) of the MutL homolog of Neisseria gonorrhoeae (NgoL) determined to a resolution of 2.4 A. The structure shows that the metal binding motif exists in a helical configuration and that four of the six conserved motifs in the MutL family, including the metal binding site, localize together to form a composite active site. NgoL-CTD exists in the form of an elongated inverted homodimer stabilized by a hydrophobic interface rich in leucines. The inverted arrangement places the two composite active sites in each subunit on opposite lateral sides of the homodimer. Such an arrangement raises the possibility that one of the active sites is occluded due to interaction of NgoL with other protein factors involved in MMR. The presentation of only one active site to substrate DNA will ensure that nicking of only one strand occurs to prevent inadvertent and deleterious double stranded cleavage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salmonella typhimurium YeaD (stYeaD), annotated as a putative aldose 1-epimerase, has a very low sequence identity to other well characterized mutarotases. Sequence analysis suggested that the catalytic residues and a few of the substrate-binding residues of galactose mutarotases (GalMs) are conserved in stYeaD. Determination of the crystal structure of stYeaD in an orthorhombic form at 1.9 angstrom resolution and in a monoclinic form at 2.5 angstrom resolution revealed this protein to adopt the beta-sandwich fold similar to GalMs. Structural comparison of stYeaD with GalMs has permitted the identification of residues involved in catalysis and substrate binding. In spite of the similar fold and conservation of catalytic residues, minor but significant differences were observed in the substrate- binding pocket. These analyses pointed out the possible role of Arg74 and Arg99, found only in YeaD-like proteins, in ligand anchoring and suggested that the specificity of stYeaD may be distinct from those of GalMs