859 resultados para Computer vision teaching
Resumo:
Il machine learning negli ultimi anni ha acquisito una crescente popolarità nell’ambito della ricerca scientifica e delle sue applicazioni. Lo scopo di questa tesi è stato quello di studiare il machine learning nei suoi aspetti generali e applicarlo a problemi di computer vision. La tesi ha affrontato le difficoltà del dover spiegare dal punto di vista teorico gli algoritmi alla base delle reti neurali convoluzionali e ha successivamente trattato due problemi concreti di riconoscimento immagini: il dataset MNIST (immagini di cifre scritte a mano) e un dataset che sarà chiamato ”MELANOMA dataset” (immagini di melanomi e nevi sani). Utilizzando le tecniche spiegate nella sezione teorica si sono riusciti ad ottenere risultati soddifacenti per entrambi i dataset ottenendo una precisione del 98% per il MNIST e del 76.8% per il MELANOMA dataset
Resumo:
Neural scene representation and neural rendering are new computer vision techniques that enable the reconstruction and implicit representation of real 3D scenes from a set of 2D captured images, by fitting a deep neural network. The trained network can then be used to render novel views of the scene. A recent work in this field, Neural Radiance Fields (NeRF), presented a state-of-the-art approach, which uses a simple Multilayer Perceptron (MLP) to generate photo-realistic RGB images of a scene from arbitrary viewpoints. However, NeRF does not model any light interaction with the fitted scene; therefore, despite producing compelling results for the view synthesis task, it does not provide a solution for relighting. In this work, we propose a new architecture to enable relighting capabilities in NeRF-based representations and we introduce a new real-world dataset to train and evaluate such a model. Our method demonstrates the ability to perform realistic rendering of novel views under arbitrary lighting conditions.
Resumo:
The usage of Optical Character Recognition’s (OCR, systems is a widely spread technology into the world of Computer Vision and Machine Learning. It is a topic that interest many field, for example the automotive, where becomes a specialized task known as License Plate Recognition, useful for many application from the automation of toll road to intelligent payments. However, OCR systems need to be very accurate and generalizable in order to be able to extract the text of license plates under high variable conditions, from the type of camera used for acquisition to light changes. Such variables compromise the quality of digitalized real scenes causing the presence of noise and degradation of various type, which can be minimized with the application of modern approaches for image iper resolution and noise reduction. Oneclass of them is known as Generative Neural Networks, which are very strong ally for the solution of this popular problem.
Resumo:
Artificial Intelligence (AI) has substantially influenced numerous disciplines in recent years. Biology, chemistry, and bioinformatics are among them, with significant advances in protein structure prediction, paratope prediction, protein-protein interactions (PPIs), and antibody-antigen interactions. Understanding PPIs is critical since they are responsible for practically everything living and have several uses in vaccines, cancer, immunology, and inflammatory illnesses. Machine Learning (ML) offers enormous potential for effectively simulating antibody-antigen interactions and improving in-silico optimization of therapeutic antibodies for desired features, including binding activity, stability, and low immunogenicity. This research looks at the use of AI algorithms to better understand antibody-antigen interactions, and it further expands and explains several difficulties encountered in the field. Furthermore, we contribute by presenting a method that outperforms existing state-of-the-art strategies in paratope prediction from sequence data.
Resumo:
Miniaturized flying robotic platforms, called nano-drones, have the potential to revolutionize the autonomous robots industry sector thanks to their very small form factor. The nano-drones’ limited payload only allows for a sub-100mW microcontroller unit for the on-board computations. Therefore, traditional computer vision and control algorithms are too computationally expensive to be executed on board these palm-sized robots, and we are forced to rely on artificial intelligence to trade off accuracy in favor of lightweight pipelines for autonomous tasks. However, relying on deep learning exposes us to the problem of generalization since the deployment scenario of a convolutional neural network (CNN) is often composed by different visual cues and different features from those learned during training, leading to poor inference performances. Our objective is to develop and deploy and adaptation algorithm, based on the concept of latent replays, that would allow us to fine-tune a CNN to work in new and diverse deployment scenarios. To do so we start from an existing model for visual human pose estimation, called PULPFrontnet, which is used to identify the pose of a human subject in space through its 4 output variables, and we present the design of our novel adaptation algorithm, which features automatic data gathering and labeling and on-device deployment. We therefore showcase the ability of our algorithm to adapt PULP-Frontnet to new deployment scenarios, improving the R2 scores of the four network outputs, with respect to an unknown environment, from approximately [−0.2, 0.4, 0.0,−0.7] to [0.25, 0.45, 0.2, 0.1]. Finally we demonstrate how it is possible to fine-tune our neural network in real time (i.e., under 76 seconds), using the target parallel ultra-low power GAP 8 System-on-Chip on board the nano-drone, and we show how all adaptation operations can take place using less than 2mWh of energy, a small fraction of the available battery power.
Resumo:
Technological advancement has undergone exponential growth in recent years, and this has brought significant improvements in the computational capabilities of computers, which can now perform an enormous amount of calculations per second. Taking advantage of these improvements has made it possible to devise algorithms that are very demanding in terms of the computational resources needed to develop architectures capable of solving the most complex problems: currently the most powerful of these are neural networks and in this thesis I will combine these tecniques with classical computer vision algorithms to improve the speed and accuracy of maintenance in photovoltaic facilities.
Resumo:
This article aims to investigate pre-school mathematics teaching from an uptodate perspective. To pursue this contemporary vision we focus on four key questions: what kind of maths is being worked on, who is doing it, how it is being done, and why it is being done
Resumo:
Medical universities and teaching hospitals in Iraq are facing a lack of professional staff due to the ongoing violence that forces them to flee the country. The professionals are now distributed outside the country which reduces the chances for the staff and students to be physically in one place to continue the teaching and limits the efficiency of the consultations in hospitals. A survey was done among students and professional staff in Iraq to find the problems in the learning and clinical systems and how Information and Communication Technology could improve it. The survey has shown that 86% of the participants use the Internet as a learning resource and 25% for clinical purposes while less than 11% of them uses it for collaboration between different institutions. A web-based collaborative tool is proposed to improve the teaching and clinical system. The tool helps the users to collaborate remotely to increase the quality of the learning system as well as it can be used for remote medical consultation in hospitals.
Resumo:
Current policies on education to visually impaired point for a growing trend of including students with special educational needs in regular schools. However, most often this inclusion is not accompanied by an appropriate professional trained or infrastructure, which has been presented as a big problem for regular school teachers who have students with visual impairments in their classroom. Based on this situation, the Group of Extension in Tactile Cartography from UNESP - University of the State of São Paulo - Campus de Rio Claro - SP - Brazil has been developing educational material of geography and cartography to blind students at a special school. Among the materials developed in this study highlight the development of graphics and board games provided with sound capabilities through MAPAVOX, software developed in partnership with UFRJ - Federal University from Rio de Janeiro - RJ - Brazil. Through this software, sound capabilities can be inserted into built materials, giving them a multi-sensory character. In most cases the necessary conditions for building specific materials to students with visual impairments is expensive and beyond the reach of features from a regular school, so the survey sought to use easy access and low cost materials like Cork, leaf aluminum, material for fixing and others. The development of these materials was supported by preparation in laboratory and its subsequent test through practices involving blind students. The methodology used on the survey is based on qualitative research and non comparative analysis of the results. In other words, the material is built based on the special students perception and reality construction, not being mere adaptations of visual materials, but a construction focused on the reality of the visually impaired. The results proved were quite successful as the materials prepared were effective on mediating the learning process of students with disabilities. Geographical and cartographic concepts were seized by the students through the technology used, associated with the use of materials that took into account in its building process the perception of the students.
Resumo:
The present study aimed at providing conditions for the assessment of color discrimination in children using a modified version of the Cambridge Colour Test (CCT, Cambridge Research Systems Ltd., Rochester, UK). Since the task of indicating the gap of the Landolt C used in that test proved counterintuitive and/or difficult for young children to understand, we changed the target Stimulus to a patch of color approximately the size of the Landolt C gap (about 7 degrees Of Visual angle at 50 cm from the monitor). The modifications were performed for the CCT Trivector test which measures color discrimination for the protan, deutan and tritan confusion lines. Experiment I Sought to evaluate the correspondence between the CCT and the child-friendly adaptation with adult subjects (n = 29) with normal color vision. Results showed good agreement between the two test versions. Experiment 2 tested the child-friendly software with children 2 to 7 years old (n = 25) using operant training techniques for establishing and maintaining the subjects` performance. Color discrimination thresholds were progressively lower as age increased within the age range tested (2 to 30 years old), and the data-including those obtained for children-fell within the range of thresholds previously obtained for adults with the CCT. The protan and deutan thresholds were consistently lower than tritan thresholds, a pattern repeatedly observed in adults tested with the CCT. The results demonstrate that the test is fit for assessment of color discrimination in young children and may be a useful tool for the establishment of color vision thresholds during development.