976 resultados para COUPLED GCM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-dimensional, regional coupled atmosphere-ocean model with full physics is developed to study air-sea interactions during winter storms off the U. S. east coast. Because of the scarcity of open ocean observations, models such as this offer valuable opportunities to investigate how oceanic forcing drives atmospheric circulation and vice versa. The study presented here considers conditions of strong atmospheric forcing (high wind speeds) and strong oceanic forcing (significant sea surface temperature (SST) gradients). A simulated atmospheric cyclone evolves in a manner consistent with Eta reanalysis, and the simulated air-sea heat and momentum exchanges strongly affect the circulations in both the atmosphere and the ocean. For the simulated cyclone of 19-20 January 1998, maximum ocean-to-atmosphere heat fluxes first appear over the Gulf Stream in the South Atlantic Bight, and this results in rapid deepening of the cyclone off the Carolina coast. As the cyclone moves eastward, the heat flux maximum shifts into the region near Cape Hatteras and later northeast of Hatteras, where it enhances the wind locally. The oceanic response to the atmospheric forcing is closely related to the wind direction. Southerly and southwesterly winds tend to strengthen surface currents in the Gulf Stream, whereas northeasterly winds weaken the surface currents in the Gulf Stream and generate southwestward flows on the shelf. The oceanic feedback to the atmosphere moderates the cyclone strength. Compared with a simulation in which the oceanic model always passes the initial SST to the atmospheric model, the coupled simulation in which the oceanic model passes the evolving SST to the atmospheric model produces higher ocean-to-atmosphere heat flux near Gulf Stream meander troughs. This is due to wind-driven lateral shifts of the stream, which in turn enhance the local northeasterly winds. Away from the Gulf Stream the coupled simulation produces surface winds that are 5 similar to 10% weaker. Differences in the surface ocean currents between these two experiments are significant on the shelf and in the open ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While cancer is one of the greatest challenges to public health care, prostate cancer was chosen as cancer model to develop a more accurate imaging assessment than those currently available. Indeed, an efficient imaging technique which considerably improves the sensitivity and specificity of the diagnostic and predicting the cancer behavior would be extremely valuable. The concept of optoacoustic imaging using home-made functionalized gold nanoparticles coupled to an antibody targeting PSMA (prostate specific membrane antigen) was evaluated on different cancer cell lines to demonstrate the specificity of the designed platform. Two commonly used microscopy techniques (indirect fluorescence and scanning electron microscopy) showed their straightforwardness and versatility for the nanoparticle binding investigations regardless the composition of the investigated nanoobjects. Moreover most of the research laboratories and centers are equipped with fluorescence microscopes, so indirect fluorescence using Quantum dots can be used for any active targeting nanocarriers (polymers, ceramics, metals, etc.). The second technique based on backscattered electron is not only limited to gold nanoparticles but also suits for any study of metallic nanoparticles as the electronic density difference between the nanoparticles and binding surface stays high enough. Optoacoustic imaging was finally performed on a 3D cellular model to assess and prove the concept of the developed platform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to clarify the mechanism taking place in field-enhanced sample injection coupled to sweeping and micellar EKC (FESI-Sweep-MEKC), with the utilization of two acidic high-conductivity buffers (HCBs), phosphoric acid or sodium phosphate buffer, in view of maximizing sensitivity enhancements. Using cationic model compounds in acidic media, a chemometric approach and simulations with SIMUL5 were implemented. Experimental design first enabled to identify the significant factors and their potential interactions. Simulation demonstrates the formation of moving boundaries during sample injection, which originate at the initial sample/HCB and HCB/buffer discontinuities and gradually change the compositions of HCB and BGE. With sodium phosphate buffer, the HCB conductivity increased during the injection, leading to a more efficient preconcentration by staking (about 1.6 times) than with phosphoric acid alone, for which conductivity decreased during injection. For the same injection time at constant voltage, however, a lower amount of analytes was injected with sodium phosphate buffer than with phosphoric acid. Consequently sensitivity enhancements were lower for the whole FESI-Sweep-MEKC process. This is why, in order to maximize sensitivity enhancements, it is proposed to work with sodium phosphate buffer as HCB and to use constant current during sample injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The newly developed atmosphere–ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of the interactive chemistry module on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM) and without (NOCHEM) interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The largest differences are found for the atmospheric dynamics in the polar regions, with slightly stronger northern and southern winter polar vortices in CHEM. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parametrization of the absorption of ozone and oxygen in the Lyman-alpha, Schumann–Runge, Hartley, and Higgins bands. This effect is parametrized in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations differ substantially between the two experiments, but their effect on the temperatures is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present day observations. Sudden stratospheric warming events are well reproduced in terms of their frequency, but the distribution amongst the winter months is too uniform. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600–2000 using an ensemble of simulations driven by a spectral solar forcing reconstruction. The amplitude of the reconstruction is large in comparison to other state-of-the-art reconstructions, providing an upper limit for the importance of the solar signal. In the pre-industrial period (1600–1850) the simulated surface temperature trends are in reasonable agreement with temperature reconstructions, although the multi-decadal variability is more pronounced. This enhanced variability can be attributed to the variability in the solar forcing. The simulated temperature reductions during the Maunder Minimum are in the lowest probability range of the proxy records. During the Dalton Minimum, when also volcanic forcing is an important driver of temperature variations, the agreement is better. In the industrial period from 1850 onward SOCOL-MPIOM overestimates the temperature increase in comparison to observational data sets. Sensitivity simulations show that this overestimation can be attributed to the increasing trend in the solar forcing reconstruction that is used in this study and an additional warming induced by the simulated ozone changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study of the model spin-glass LiHo0.5Er0.5F4 using simultaneous ac susceptibility, magnetization, and magnetocaloric effect measurements along with small angle neutron scattering (SANS) at sub-Kelvin temperatures. All measured bulk quantities reveal hysteretic behavior when the field is applied along the crystallographic c axis. Furthermore, avalanchelike relaxation is observed in a static field after ramping from the zero-field-cooled state up to 200–300 Oe. SANS measurements are employed to track the microscopic spin reconfiguration throughout both the hysteresis loop and the related relaxation. Comparing the SANS data to inhomogeneous mean-field calculations performed on a box of one million unit cells provides a real-space picture of the spin configuration. We discover that the avalanche is being driven by released Zeeman energy, which heats the sample and creates positive feedback, continuing the avalanche. The combination of SANS and mean-field simulations reveal that the conventional distribution of cluster sizes is replaced by one with a depletion of intermediate cluster sizes for much of the hysteresis loop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receptors of the Eph family and their ligands (ephrins) mediate developmental vascular assembly and direct axonal guidance. Migrating cell processes identify appropriate targets within migratory fields based on topographically displayed ephrin gradients. Here, EphB1 regulated cell attachment by discriminating the density at which ephrin-B1 was displayed on a reconstituted surface. EphB1-ephrin-B1 engagement did not promote cell attachment through mechanical tethering, but did activate integrin-mediated attachment. In endothelial cells, attachment to RGD peptides or fibrinogen was mediated through alphavbeta3 integrin. EphB1 transfection conferred ephrin-B1-responsive activation of alpha5beta1 integrin-mediated cell attachment in human embryonic kidney cells. Activation-competent but signaling-defective EphB1 point mutants failed to stimulate ephrin-B1 dependent attachment. These findings lead us to propose that EphB1 functions as a 'ligand density sensor' to signal integrin-mediated cell-matrix attachment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

East Africa’s Lake Victoria provides resources and services to millions of people on the lake’s shores and abroad. In particular, the lake’s fisheries are an important source of protein, employment, and international economic connections for the whole region. Nonetheless, stock dynamics are poorly understood and currently unpredictable. Furthermore, fishery dynamics are intricately connected to other supporting services of the lake as well as to lakeshore societies and economies. Much research has been carried out piecemeal on different aspects of Lake Victoria’s system; e.g., societies, biodiversity, fisheries, and eutrophication. However, to disentangle drivers and dynamics of change in this complex system, we need to put these pieces together and analyze the system as a whole. We did so by first building a qualitative model of the lake’s social-ecological system. We then investigated the model system through a qualitative loop analysis, and finally examined effects of changes on the system state and structure. The model and its contextual analysis allowed us to investigate system-wide chain reactions resulting from disturbances. Importantly, we built a tool that can be used to analyze the cascading effects of management options and establish the requirements for their success. We found that high connectedness of the system at the exploitation level, through fisheries having multiple target stocks, can increase the stocks’ vulnerability to exploitation but reduce society’s vulnerability to variability in individual stocks. We describe how there are multiple pathways to any change in the system, which makes it difficult to identify the root cause of changes but also broadens the management toolkit. Also, we illustrate how nutrient enrichment is not a self-regulating process, and that explicit management is necessary to halt or reverse eutrophication. This model is simple and usable to assess system-wide effects of management policies, and can serve as a paving stone for future quantitative analyses of system dynamics at local scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel canisters and as drift seals. Sand/bentonite (s/b) is foreseen as backfill material of access galleries or as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore-water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predicted significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this thesis was to characterize and quantify the cement/bentonite interactions both spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used to perform X-ray computed tomography (CT) scans without interruption of running experiments. CT scans allowed tracking the evolution of the reaction plume and changes in core volume/diameter/density during the experiments. In total 4 core infiltration experiments were carried out for this study with the compacted and saturated cores consisting of MX-80 bentonite and sand/MX-80 bentonite mixture (s/b; 65/35%). Two different high-pH cementitious pore-fluids were infiltrated: a young (early) ordinary Portland cement pore-fluid (APWOPC; K+–Na+–OH-; pH 13.4; ionic strength 0.28 mol/kg) and a young ‘low-pH’ ESDRED shotcrete pore-fluid (APWESDRED; Ca2+–Na+–K+–formate; pH 11.4; ionic strength 0.11 mol/kg). The experiments lasted between 1 and 2 years. In both bentonite experiments, the hydraulic conductivity was strongly reduced after switching to high-pH fluids, changing eventually from an advective to a diffusion-dominated transport regime. The reduction was mainly induced by mineral precipitation and possibly partly also by high ionic strength pore-fluids. Both bentonite cores showed a volume reduction and a resulting transient flow in which pore-water was squeezed out during high-pH infiltration. The outflow chemistry was characterized by a high ionic strength, while chloride in the initial pore water got replaced as main anionic charge carrier by sulfate, originating from gypsum dissolution. The chemistry of the high-pH fluids got strongly buffered by the bentonite, consuming hydroxide and in case of APWESDRED also formate. Hydroxide got consumed by mineral reactions (saponite and possibly talc and brucite precipitation), while formate being affected by bacterial degradation. Post-mortem analysis showed reaction zones near the inlet of the bentonite core, characterized by calcium and magnesium enrichment, consisting predominately of calcite and saponite, respectively. Silica got enriched in the outflow, indicating dissolution of silicate-minerals, identified as preferentially cristobalite. In s/b, infiltration of APWOPC reduced the hydraulic conductivity strongly, while APWESDRED infiltration had no effect. The reduction was mainly induced by mineral precipitation and probably partly also by high ionic strength pore-fluids. Not clear is why the observed mineral precipitates in the APWESDRED experiment had no effect on the fluid flow. Both s/b cores showed a volume expansion along with decreasing ionic strengths of the outflow, due to mineral reactions or in case of APWESDRED infiltration also mediated by microbiological activity, consuming hydroxide and formate, respectively. The chemistry of the high-pH fluids got strongly buffered by the s/b. In the case of APWESDRED infiltration, formate reached the outflow only for a short time, followed by enrichment in acetate, indicating most likely biological activity. This was in agreement to post-mortem analysis of the core, observing black spots on the inflow surface, while the sample had a rotten-egg smell indicative of some sulfate reduction. Post-mortem analysis showed further in both cores a Ca-enrichment in the first 10 mm of the core due to calcite precipitation. Mg-enrichment was only observed in the APWOPC experiment, originating from newly formed saponite. Silica got enriched in the outflow of both experiments, indicating dissolution of silicate-minerals, identified in the OPC experiment as cristobalite. The experiments attested an effective buffering capacity for bentonite and s/b, a progressing coupled hydraulic-chemical sealing process and also the preservation of the physical integrity of the interface region in this setup with a total pressure boundary condition on the core sample. No complete pore-clogging was observed but the hydraulic conductivity got rather strongly reduced in 3 experiments, explained by clogging of the intergranular porosity (macroporosity). Such a drop in hydraulic conductivity may impact the saturation time of the buffer in a nuclear waste repository, although the processes and geometry will be more complex in repository situation.