912 resultados para Brain energy metabolism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of this dissertation was leptin and the leptin receptor, and the role of these genes (OB and OB-R) in the development of obesity and type 2 diabetes in humans and Psammomys obesus, a polygenic rodent model of obesity and type 2 diabetes. Studies in humans showed that circulating leptin concentrations were positively associated with adiposity, and independently associated with circulating insulin and triglyceride concentrations. Analysis of two leptin receptor sequence polymorphisms in a Caucasian Australian population and a population of Nauruan males, with very high prevalence rates of obesity, showed no associations between sequence variation within the OB-R gene and obesity- or diabetes-related phenotypic measures. In addition, these two OB-R polymorphisms were not associated with longitudinal changes in body mass or composition in either of the populations examined. A unique analysis of the effects of multiple gene defects in the Nauruan population, demonstrated that the presence of sequence alterations in both the OB and OB-R genes were associated with insulin resistance. Psammomys obesus is regarded as an excellent rodent model in which to study the development of obesity and type 2 diabetes in humans. Examination of circulating leptin concentrations in Psammomys revealed that, as in humans, leptin concentrations were associated with adiposity, and independently associated with circulating insulin concentrations. This animal model was utilised to examine expression of OB-R, and the regulation of expression of this gene after dietary manipulation. OB-R is known to have several isoforms, and in particular, OB-RA and OB-RB gene expression were examined. OB-RB is the main signalling isoform of the leptin receptors. It has a long intracellular domain and has previously been shown to play an important role in energy balance and body weight regulation in rodents and humans. OB-RA is a much shorter isoform of OB-R, and although it lacks the long intracellular domain necessary to activate the JAK/STAT pathway, OB-RA is also capable of signalling, although to a lesser degree than OB-RB. OB-RA is found to be expressed almost ubiquitously throughout the body, and this isoform may be involved in transport of leptin into the cell, although its role remains unclear. OB-RA and OB-RB were both found to be expressed in a large number of tissues in Psammomys obesus. Interestingly, obese Psammomys were found to have lower levels of expression of OB-RA and OB-RB in the hypothalamus, compared to lean animals. This finding raises the possibility that decreased leptin signalling in the brain of obese, hyperleptinemic Psammomys obesus may contribute to the leptin resistance previously described in this animal model. However, the primary defect is unclear, as alternatively, increased circulating leptin concentrations may lead to down-regulation of leptin receptors. The effect of fasting on leptin concentrations and gene expression of OB-RA and OB-RB was also examined. A 24-hour fast resulted in no change in body weight, but a reduction in circulating leptin concentrations, and an increase in hypothalamic OB-RB gene expression in lean Psammomys. In obese animals, fasting again did not alter body weight, but resulted in an increase in both circulating leptin concentrations and hypothalamic OB-RB gene expression. In the liver, fasting resulted in a large increase in OB-RA gene expression in both lean and obese animals. These results highlighted the fact that regulation of leptin receptor gene expression in polygenic models of obesity and type 2 diabetes is complex, and not solely under the control of circulating leptin concentrations. Sucrose-feeding is an established method of inducing obesity and type 2 diabetes in rodents, and this experimental paradigm was utilised to examine the effects of longer term perturbations of energy balance on the leptin signalling pathway in Psammomys obesus. Addition of a 5% sucrose solution to the diet of lean and obese Psammomys resulted in increased body weight in both groups of animals, however only obese Psammomys showed increased fat mass and the development of type 2 diabetes. The changes in body mass and composition with sucrose-feeding were accompanied by decreased circulating leptin concentrations in both groups of animals, as well as a range of changes in leptin receptor gene expression. Sucrose-feeding increased hypothalamic OB-RB gene expression in obese Psammomys only, while in the liver there was evidence of a reduction in OB-RA and OB-RB gene expression in both lean and obese animals. The direct effects of sucrose on the leptin signalling pathway are unclear, however it is possible to speculate that the effect of sucrose to decrease leptin concentrations may have been involved in the exacerbation of obesity and the development of type 2 diabetes in obese Psammomys, From these studies, it appears that sequence variation in the OB and OB-R genes is unlikely to be a major factor in the etiology of obesity in human populations. The ability to examine regulation of expression of these genes in Psammomys obesus, however, has demonstrated that the effects of nutritional modifications on leptin receptor gene expression need closer attention. The role of the OB and OB-R genes in metabolism and the development of type 2 diabetes also warrants further examination, with particular attention on the differential effects of dietary modifications on leptin receptor gene expression across a range of tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis explores the metabolism of the steroid progesterone within both rat and mouse brain cells in culture. The research identified a steroid 21-hydroxylase within the rat culture system, that has downstream implications on stress and behaviour. Novel uses for a stain to accurately discriminate two brain celltypes were discovered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physiological response to extreme fasting in subantarctic fur seal (Arctocephalus tropicalis) pups: metabolic rates, energy reserve utilization, and water fluxes. Am J Physiol Regul Integr Comp Physiol 297: R1582–R1592, 2009. First published September 23, 2009; doi:10.1152/ajpregu.90857.2008.— Surviving prolonged fasting requires various metabolic adaptations, such as energy and protein sparing, notably when animals are simultaneously engaged in energy-demanding processes such as growth. Due to the intermittent pattern of maternal attendance, subantarctic fur seal pups have to repeatedly endure exceptionally long fasting episodes throughout the 10-mo rearing period while preparing for nutritional independence. Their metabolic responses to natural prolonged fasting (33.4 ± 3.3 days) were investigated at 7 mo of age. Within 4–6 fasting days, pups shifted into a stage of metabolic economy characterized by a minimal rate of body mass loss (0.7%/day) and decreased resting metabolic rate  (5.9 ± 0.1 ml O2 ·kg-1·day-1) that was only 10% above the level predicted for adult terrestrial mammals. Field metabolic rate (289 ± 10 kJ·kg-1 ·day-1) and water influx (7.9 ± 0.9 ml·kg-1 ·day-1) were also among the lowest reported for any young otariid, suggesting minimized energy allocation to behavioral activity and thermoregulation. Furthermore, lean tissue degradation was dramatically reduced. High initial adiposity (>48%) and predominant reliance on lipid catabolism likely contributed to the exceptional degree of protein sparing attained. Blood chemistry supported these findings and suggested utilization of alternative fuels, such as β-hydroxybutyrate and de novo synthesized glucose from fat-released glycerol. Regardless of sex and body condition, pups tended to adopt a convergent strategy of extreme energy and lean body mass conservation that appears highly adaptive for it allows some tissue growth during the repeated episodes of prolonged fasting they experience throughout their development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reductions in brain glutathione (GSH) levels have been reported in schizophrenia. We investigated the effects of brain GSH depletion on prepulse inhibition (PPI), a model of sensorimotor gating which is disrupted in individuals with schizophrenia. It was hypothesized that GSH depletion would lead to disruption of PPI similar to that seen in schizophrenia and enhance the effect of increased dopamine release by amphetamine. Sprague-Dawley rats and C57Bl/6 mice were treated with saline or 2-cyclohexene-1-one (CHX, 75 mg/kg and 120 mg/kg respectively) to deplete brain GSH. 225 minutes later the animals were injected with amphetamine (2.5 mg/kg in rats and 25 mg/kg in mice). Total brain GSH levels were measured using an enzymatic recycling assay. Surprisingly, in rats CHX treatment prevented the disruption of PPI by amphetamine. Thus, while there was the expected disruption of PPI caused by amphetamine on its own (average %PPI reduced from 58 ± 5 to 44 ± 4), in combination with CHX, amphetamine had no significant effect (67 ± 4 vs. 63 ± 3, respectively). In contrast to rats, in mice CHX had no effect on PPI. Thus, amphetamine similarly disrupted PPI after saline (41 ± 5 vs. 28 ± 5) and CHX pretreatment (45 ± 6 vs. 26 ± 5). There were significant 40-63% depletions of GSH in frontal cortex and striatum of CHX-treated rats and mice. These data show that GSH depletion in the brain by CHX treatment did not induce the expected decrease in PPI. Because the levels of GSH depletion in this study were similar to those found in schizophrenia, these results cast doubt on a direct interaction between brain GSH levels and PPI disruption in this illness. In rats, CHX treatment prevented the disruption of PPI caused by amphetamine. We have observed that resting levels of GSH are lower in rats than in mice. It is plausible that some oxidative damage may occur after amphetamine treatment alone, which induces marked release of the electroactive species, dopamine. In mice with their higher levels of GSH (either with or without CHX treatment) and in control rats, this does not cause functional effects. However, in CHX-treated rats GSH levels are reduced to a point where amphetamine-induced dopamine release may cause increased metabolism and lipid peroxidation inducing a decrease in postsynaptic dopamine receptor function and consequently leading to an apparent inhibition of the disruption of PPI. In conclusion, while individuals with schizophrenia show disruption of PPI and reduced brain GSH levels, in rats and mice brain GSH depletion alone does not impact on PPI. In combination with a hyperdopaminergic state, functional effects on PPI regulation were found. These effects warrant further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Life-history data for 63 species from the mammalian order Insectivora have been collated from the literature. These data were analysed for covariation and for correlations with body mass, brain mass and mass-specific resting metabolic rate. An independent contrasts method has been used to remove the effect of phylogeny. Due to uncertainties surrounding their evolutionary relationships, 22 different phylogenies of insectivores have been used as a basis for comparative analysis. The results show that several key correlations between life-history variables are only significant when certain phylogenies are used, highlighting the problems of such analyses when the phylogeny used is inaccurate. After removing the effect of phylogeny, relatively few significant correlations remain. Insectivores that have a high body mass have relatively lower metabolic rates, longer lifespans and longer gestation lengths. There is some support for a fast±slow continuum in insectivore life-history evolution: there are some significant positive correlations between measures of growth rates (e.g. gestation length and age at weaning) and lifespan, and some negative correlations between growth rates and measures of reproductive output. It is suggested that the seasonality of life of many insectivores may have played an influential role in the evolution of the group, in particular in delaying the onset of sexual maturity. There is little indication that brain size influences life-history evolution in this order, but metabolism may play an important role. The energetic requirements of maintaining high metabolic rates in small mammals such as insectivores may be constraining life histories to a greater extent than occurs in larger mammals. This effect may have obscured the relationship between metabolic rate and life histories in wider inter-order analyses. Finally, there is considerable evidence that sex differences play a large role in shaping insectivore evolution, and it is suggested that this factor must be considered more often in future studies of mammalian life histories in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep brain stimulation (DBS) is a novel and effective surgical intervention for refractory Parkinson's disease (PD). The authors review the current literature to identify the clinical correlates associated with subthalamic nucleus (STN) DBS-induced hypomania/mania in PD patients. Ventromedial electrode placement has been most consistently implicated in the induction of STN DBS-induced mania. There is some evidence of symptom amelioration when electrode placement is switched to a more dorsolateral contact. Additional clinical correlates may include unipolar stimulation, higher voltage (>3 V), male sex, and/or early-onset PD. STN DBS-induced psychiatric adverse events emphasize the need for comprehensive psychiatric presurgical evaluation and follow-up in PD patients. Animal studies and prospective clinical research, combined with advanced neuroimaging techniques, are needed to identify clinical correlates and underlying neurobiological mechanisms of STN DBS-induced mania. Such working models would serve to further our understanding of the neurobiological underpinnings of mania and contribute valuable new insight toward development of future DBS mood-stabilization therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the muscle structure-function relationships that underlie the aerobic capacity of an insectivorous, small (~15?g) marsupial, Sminthopsis crassicaudata (Family: Dasyuridae), to obtain further insight into energy use patterns in marsupials relative to those in placentals, their sister clade within the Theria (advanced mammals). Disparate hopping marsupials (Suborder Macropodiformes), a kangaroo (Macropus rufus) and a rat-kangaroo (Bettongia penicillata), show aerobic capabilities as high as those of 'athletic' placentals. Equivalent muscle mitochondrial volumes and cardiovascular features support these capabilities. We examined S. crassicaudata to determine whether highly developed aerobic capabilities occur elsewhere in marsupials, rather than being restricted to the more recently evolved Macropodiformes. This was the case. Treadmill-trained S. crassicaudata attained a maximal aerobic metabolic rate (VO2,max or MMR) of 272ml O2min-1kg -1 (N=8), similar to that reported for a small (?20g), 'athletic' placental, Apodemus sylvaticus, 264ml O2min -1kg-1. Hopping marsupials have comparable aerobic levels when body mass variation is considered. Sminthopsis crassicaudata has a basal metabolic rate (BMR) about 75% of placental values but it has a notably large factorial aerobic scope (fAS) of 13, elevated fAS also features in hopping marsupials. The VO2,max of S. crassicaudata was supported by an elevated total muscle mitochondrial volume, which was largely achieved through high muscle mitochondrial volume densities, Vv(mt,f), the mean value being 14.0±1.33%. These data were considered in relation to energy use levels in mammals, particularly field metabolic rate (FMR). BMR is consistently lower in marsupials, but this is balanced by a high fAS, such that marsupial MMR matches that of placentals. However, FMR shows different mass relationships in the two clades, with the FMR of small (<, 125 g) marsupials, such as S. crassicaudata, being higher than that in comparably sized placentals, with the reverse applying for larger marsupials. The flexibility of energy output in marsupials provides explanations for this pattern. Overall, our data refute widely held notions of mechanistically closely linked relationships between body mass, BMR, FMR and MMR in mammals generally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monounsaturated fatty acids (MUFA)-rich and n-6 polyunsaturated fatty acid (n-6 PUFA)-rich vegetable oils are increasingly used as fish oil replacers for aquafeed formulation. The present study investigated the fatty acid metabolism in juvenile European sea bass (Dicentrarchus labrax, 38.4 g) fed diets containing fish oil (FO, as the control treatment) or two different vegetable oils (the MUFA-rich canola/rapeseed oil, CO, and the n-6 PUFA-rich cottonseed oil, CSO) tested individually or as a 50/50 blend (CO/CSO). The whole-body fatty acid balance method was used to deduce the apparent in vivo fatty acid metabolism. No effect on growth performance and feed utilization was recorded. However, it should be noted that the fish meal content of the experimental diets was relatively high, and thus the requirement for n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) may have likely been fulfilled even if dietary fish oil was fully replaced by vegetable oils. Overall, relatively little apparent in vivo fatty acid bioconversion was recorded, whilst the apparent in vivo ?-oxidation of dietary fatty acid was largely affected by the dietary lipid source, with higher rate of ?-oxidation for those fatty acids which were provided in dietary surplus. The deposition of 20:5n-3 and 22:6n-3, as % of the dietary intake, was greatest for the fish fed on the CSO diet. It has been shown that European sea bass seems to be able to efficiently use n-6 PUFA for energy substrate, and this may help in minimizing the ?-oxidation of the health benefiting n-3 LC-PUFA and thus increase their deposition into fish tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the ubiquity and evolutionary importance of parasites, their effect on the energy budget of mammals remains surprisingly unclear. The eastern chipmunk (Tamias striatus (L., 1758)) is a burrowing rodent that is commonly infected by cuterebrid bot fly (Cuterebra emasculator Fitch, 1856) larvae. We measured resting metabolic rate (RMR) and cold-induced [Vo.sub.2]-max (under heliox atmosphere) in 20 free-ranging individuals, of which 4 individuals were infected by one or two larva. We found that RMR was significantly higher in chipmunks infected by bot fly larvae (mean [+ or -] SE = 0.88 [+ or -] 0.05 W) than in uninfected individuals (0.74 [+ or -] 0.02 W). In contrast, V[O.sub.2]-max was significantly lower in chipmunks infected by bot fly larvae (4.96 [+ or -] 0.70 W) than in uninfected individuals (6.37 [+ or -] 0.16 W). Consequently, the aerobic scope (ratio of [Vo.sub.2]-max to RMR) was negatively correlated with the number of bot fly larvae (infected individuals = 5.74 [+ or -] 1.03 W; noninfected individuals = 8.67 [+ or -] 0.26 W). Finally, after accounting for the effects of body mass and bot fly parasitism on RMR and [Vo.sub.2]-max, there was no correlation between the two variables among individuals within our population. In addition to providing the first estimate of [Vo.sub.2]-max in T. striatus, these results offer additional evidence that bot fly parasitism has significant impacts on the metabolic ecology of this host species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The domestic dog has undergone extensive artificial selection resulting in an extreme diversity in body size, personality, life‐history, and metabolic traits among breeds. Here we tested whether proactive personalities (high levels of activity, boldness, and aggression) are related to a fast “pace of life” (high rates of growth, mortality, and energy expenditure). Data from the literature provide preliminary evidence that artificial selection on dogs (through domestication) generated variations in personality traits that are correlated with life histories and metabolism. We found that obedient (or docile, shy) breeds live longer than disobedient (or bold) ones and that aggressive breeds have higher energy needs than unaggressive ones. These correlations could result from either human preference for particular trait combinations or, more likely, correlated responses to artificial selection on personality. Our results suggest the existence of a general pace‐of‐life syndrome arising from the coevolution of personality, metabolic, and life‐history traits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents design and simulation of a circular meander dipole antenna at the industrial, scientific, and medical band of 915 MHz for energy scavenging in a passive head-mountable deep brain stimulation device. The interaction of the proposed antenna with a rat body is modeled and discussed. In the antenna, the radiating layer is meandered, and a FR-4 substrate is used to limit the radius and height of the antenna to 14 mm and 1.60 mm, respectively. The resonance frequency of the designed antenna is 915 MHz and the bandwidth of 15 MHz at a return loss of -10 dB in free space. To model the interaction of the antenna with a rat body, two aspects including functional and biological are considered. The functional aspect includes input impedance, resonance frequency, gain pattern, radiation efficiency of the antenna, and the biological aspect involves electric field distribution, and SAR value. A complete rat model is used in the finite difference time domain based EM simulation software XFdtd. The simulated results demonstrate that the specific absorption rate distributions occur within the skull in the rat model, and their values are higher than the standard regulated values for the antenna receiving power of 1W.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A circular planar inverted-F antenna (PIFA) is designed and simulated at the industrial, scientific, and medical (ISM) band of 915 MHz for energy harvesting in a head-mountable deep brain stimulation device. Moreover, a rectifier is designed, and also the interaction of the PIFA with a rat head model is investigated. In the proposed PIFA, the top radiating layer is meandered, and a substrate of FR-4 is used. The radius and the height of the antenna are 10 mm and 1.8 mm, respectively. The bottom conductive layer works as a ground plate, and a superstrate of polyethylene reduces the electromagnetic penetration into the rat head. The resonance frequency of the designed antenna is 915 MHz with a bandwidth of 18 MHz at the return loss of -10 dB in free space. The antenna parameters (e.g. reflection coefficient, gain, radiation efficiency), electric field distribution, and SAR value are evaluated within a seven-layer rat head model by using the finite difference time domain EM simulation software XFdtd. The interactions of the antenna and the rat head model are studied in both functional and biological aspects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device.