895 resultados para Beta cell apoptosis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have designed and synthesized three novel compounds, 5-isopropylidiene derivatives of 3-dimethyl-2-thio-hydantoin (ITH-1), 3-ethyl-2-thio-2,4-oxazolidinedione (ITO-1), and 5-benzilidene-3-ethyl rhodanine (BTR-1), and have tested their chemotherapeutic properties. Our results showed that all three compounds induced cytotoxicity in a time-and concentration-dependent manner on leukemic cell line, CEM. Among the compounds tested, BTR-1 was 5- to 7-fold more potent than ITH-1 and ITO-1 when compared by trypan blue and MTT assays. IC50 value of BTR-1 was estimated to be <10 mu M. Both cell cycle analysis and tritiated thymidine assays revealed that BTR-1 affects DNA replication by inducing a block at S phase. BTR-1 treatment led to increased level of ROS production and DNA strand breaks suggesting activation of apoptosis for induction of cell death. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abrin is a type II ribosome-inactivating protein comprising of two subunits, A and B. Of the two, the A-subunit harbours the RNA-N-glycosidase activity and the B subunit is a galactose specific lectin that enables the entry of the protein inside the cell. Abrin inhibits protein synthesis and has been reported to induce apoptosis in several cell types. Based on these observations abrin is considered to have potential for the construction of immunotoxin in cell targeted therapy. Preliminary data from our laboratory however showed that although abrin inhibited the protein synthesis in all cell types, the mode of cell death varied. The aim of the present study was therefore to understand different death pathways induced by abrin in different cells. We used the human B cell line, U266B1 and compared it with the earlier studied T cell line Jurkat, for abrin-mediated inhibition of protein translation as well as cell death. While abrin triggered programmed apoptosis in Jurkat cells in a caspase-dependent manner, it induced programmed necrosis in U266B1 cells in a caspase-independent manner, even when there was reactive oxygen species production and loss of mitochondrial membrane potential. The data revealed that abrin-mediated necrosis involves lysosomal membrane permeabilization and release of cathepsins from the lysosomes. Importantly, the choice of abrin-mediated death pathway in the cells appears to depend on which of the two events occurs first: lysosomal membrane permeabilization or loss of mitochondrial membrane potential that decides cell death by necrosis or apoptosis. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various intrinsic and external factors are constantly attacking the cells causing damage to DNA and to other cellular structures. Cells in turn have evolved with different kinds of mechanisms to protect against the attacks and to repair the damage. Ultraviolet radiation (UVR) is one of the major environmental genotoxic carcinogens that causes inflammation, mutations, immunosuppression, accelerated aging of the skin and skin cancers. Epidermis is the outermost layer of the skin consisting mostly of keratinocytes, whose primary function is to protect the skin against e.g. UV radiation. LIM domain proteins are a group of proteins involved in regulation of cell growth, damage signalling, cell fate determination and signal transduction. Despite their two zinc fingers, LIM domains do not bind to DNA, but rather mediate protein-protein interactions and function as modular protein binding interfaces. We initially identified CSRP1 as UVR-regulated transcript by using expression profiling. Here we have further studied the regulation and function of CRP1, a representative of cysteine rich protein- family consisting of two LIM domains. We find that CRP1 is increased by UVR in primary human keratinocytes and in normal human skin fibroblasts. Ectopic expression of CRP1 protected the cells against UVR and provided a survival advantage, whereas silencing of CRP1 rendered the cells more photosensitive. Actinic keratosis is a premalignant lesion of skin caused by excess exposure to sunlight and sunburn, which may lead to formation of squamous cell carcinoma. The expression of CRP1 was increased in basal keratinocytes of Actinic keratosis patient specimens suggesting that CRP1 may be increased by constant exposure to UVR and may provide survival advantage for the cells also in vivo. In squamous cell carcinoma, CRP1 was only expressed in the fibroblasts surrounding the tumour. Moreover, we found that ectopic expression of CRP1 suppresses cell proliferation. Transforming growth factor beta (TGFbeta) is a multifunctional cytokine that regulates several functions in cell including growth, apoptosis and differentiation, and plays important roles in pathological disorders like cancer and fibrosis. We found that TGFbeta-signalling pathway regulates CRP1 at protein, but not at transcriptional level. The increase was mediated both through Smad and non-Smad signalling pathways involving MAPK/p38. Furthermore, we found that TGFbeta-mediated increase in CRP1 was associated with myofibroblast differentiation, and that CRP1 was significantly more expressed in idiopathic pulmonary fibrosis as compared to normal lung specimens. Since cell contractility is a distinct feature of myofibroblasts, and CRP1 is associated with actin cytoskeleton, we studied the role of CRP1 in cell contractility. CRP1 was found to localize to stress fibres that mediate contractility and to mediate myofibroblast contraction. These studies identify CRP1 as a stress responsive and cytokine regulated cytoskeletal protein that participates in pathological processes involved in fibrotic diseases and cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure of the dehydro octapeptide Boc-Val-Delta Phe-Phe-Ala-Leu-Ala-Delta Phe-Leu-OH has been determined to atomic resolution by X-ray crystallographic methods. The crystals grown by slow evaporation of peptide solution in methanol/water are orthorhombic, space group P2(1)2(1)2(1). The unit cell parameters are a = 8.404(3), b = 25.598(2) and c = 27.946(3) Angstrom, Z = 4. The agreement factor is R = 7.58% for 3636 reflections having (\F-o\) greater than or equal to 3 sigma (\F-o\). The peptide molecule is characterised by a 3(10)-helix at the N-terminus and a pi-turn at the C-terminus. This conformation is exactly similar to the helix termination features observed in proteins. The pi-turn conformation observed in the octapeptide is in good agreement with the conformational features of pi-turns seen in some proteins. The alpha(L)-position in the pi-turn of the octapeptide is occupied by Delta Phe(7), which shows that even bulky residues can be accommodated in this position of the pi-turns. In proteins, it is generally seen that alpha(L)-position is occupied by glycine residue. No intermolecular head-to-tail hydrogen bonds are observed in solid state structure of the octapeptide. A water molecule located in the unit cell of the peptide molecule is mainly used to hold the peptide molecule together in the crystal. The conformation observed for the octapeptide might be useful to understand the helix termination and chain reversal in proteins and to construct helix terminators for denovo protein design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear lamina in an eukaryotic cell is primarily composed of the lamins A, B and C. The A type lamins are found only in differentiated cell types while the B type lamins are present both in differentiated and undifferentiated cells. Lamin B interacts with the inner nuclear membrane, In recent years there have been extensive studies on the relationship between the dynamic state of lamin B and the nuclear envelope integrity with respect to the fate of a particular cell, In this article, we have analysed the recent developments and have considered the sequence of events that might be contributing to the fate of a cell either to undergo normal cell division or uncontrolled cellular proliferation or apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selective withdrawal of pituitary gonadotropins through specific antibodies is known to cause disruption of spermatogenesis. The cellular mechanism responsible for the degenerative changes under isolated effect of luteinizing hormone (LH) deprivation is not clear. Using antibodies specific to LH we have investigated the effect of immunoneutralization of LH on apoptotic cell death in the testicular cells of the immature and the adult rats. Specific neutralization of LH resulted in apoptotic cell death of germ cells, both in the immature and the adult rats. The germ cells from control animals showed predominantly high molecular weight DNA, while the antiserum treated group showed DNA cleavage into low molecular weight DNA ladder characteristic of apoptosis. This pattern could be observed within 24 h of a/s administration and the effect could be reversed by testosterone. The germ cells were purified by centrifugal elutriation and the vulnerability of germ cell types to undergo apoptosis under LH deprivation was investigated. The round spermatids and the pachytene spermatocytes were found to be the most sensitive germ cells to lack of LH and underwent apoptosis. Interestingly, spermatogonial cells were found to be the least sensitive germ cells to the lack of LH in terms of apoptotic cell death. Results show that LH, in addition to being involved in the germ cell differentiation, is also involved in cell survival and prevent degeneration of germ cells during spermatogenesis. Apoptotic DNA fragmentation may serve as a useful marker for the study of hormonal regulation of spermatogenesis and the specific neutralization of gonadotropic hormones can be a reliable model for the study of the molecular mechanism of apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transforming growth factor-beta s (TGF-beta 5) are multifunctional polypeptides, known to influence proliferation and differentiation of many cell types. TGF-beta 5 cDNA was cloned from Xenopus laevis and this isoform is unique to the amphibians. Here, we report the isolation and characterization of the TGF-beta 5 genomic clones to determine the structure of TGF-beta 5 gene. The gene consists of seven exons and all intron-exon boundaries follow the GT-AG consensus. The organization of TGF-beta 5 gene was identical to that of the mammalian TGF-beta isoforms, with the exception of position of the first splice junction. We determined the size of TGF-beta 5 gene to be approximately 20 kb.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>Transcription activator C employs a unique mechanism to activate mom gene of bacteriophage Mu. The activation process involves, facilitating the recruitment of RNA polymerase (RNAP) by altering the topology of the promoter and enhancing the promoter clearance by reducing the abortive transcription. To understand the basis of this multi-step activation mechanism, we investigated the nature of the physical interaction between C and RNAP during the process. A variety of assays revealed that only DNA-bound C contacts the beta' subunit of RNAP. Consistent to these results, we have also isolated RNAP mutants having mutations in the beta' subunit which were compromised in C-mediated activation. Mutant RNAPs show reduced productive transcription and increased abortive initiation specifically at the C-dependent mom promoter. Positive control (pc) mutants of C, defective in interaction with RNAP, retained the property of recruiting RNAP to the promoter but were unable to enhance promoter clearance. These results strongly suggest that the recruitment of RNAP to the mom promoter does not require physical interaction with C, whereas a contact between the beta' subunit and the activator, and the subsequent allosteric changes in the active site of the enzyme are essential for the enhancement of promoter clearance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural products discovered from medicinal plants have played an important role in the treatment of cancer. In an effort to identify novel small molecules which can affect the proliferation of lymphoma cells, we tested methyl angolensate (MA), a plant derived tetranortriterpenoid, purified from the crude extract of the root callus of Soymida febrifuga commonly known as Indian red wood tree. We have tested MA for its cytotoxic properties on Burkitt's lymphoma cell lines, using various cellular assays. We observed that MA induces cytotoxicity in Daudi cells in a dose-dependent manner using trypan blue, MTT and LDH assays. We find that the treatment with MA led to activation of DNA double-strand break repair proteins including KU70 and KU80, suggesting the activation of nonhomologous DNA end joining pathway in surviving cells. Further, we find that methyl angolensate could induce apoptosis by cell cycle analysis, annexin V-FITC staining, DNA fragmentation and PARP cleavage. Besides, MA treatment led to reactive oxygen species generation and loss of mitochondrial transmembrane potential. These results suggest the activation of mitochondrial pathway of apoptosis. Hence, we identify MA as a potential chemotherapeutic agent against Daudi cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA intercalating molecules are promising anticancer agents. Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and affect major physiological functions. In the present study, we have characterized two molecules with the same chemical backbone but different side chains, namely 8-methoxy pyrimido[4',5':4,5]thieno (2,3-b)quinoline-4(3H)-one (MPTQ) and 4-morpholino pyrimido[4',5':4,5]thieno(2,3-b)quinoline (morpho-PTQ) at the 8th and 4th position, respectively. Although both MPTQ and morpho-PTQ show similar biophysical properties with high DNA affinity, here we show that they differ in their biological activities. We find that MPTQ is many fold more potent than morpho-PTQ and is cytotoxic against different leukemic cell lines. IC(50) value of methoxy PTQ was estimated between 2-15 A mu M among the leukemic cells studied, while it was more than 200 A mu M when morpho-PTQ was used. Cell cycle analysis shows an increase in sub-G1 phase, without any particular cell cycle arrest. Annexin V staining in conjunction with comet assay and DNA fragmentation suggest that MPTQ induces cytotoxicity by activating apoptosis. Thus the observed low IC(50) value of MPTQ makes it a promising cancer chemotherapeutic agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explored the effect of a novel synthetic triterpenoid compound cyano enone of methyl boswellates (CEMB) on various prostate cancer and glioma cancer cell lines. CEMB displayed concentration-dependent cytotoxic activity with submicromolar lethal dose 50% (LD(50)) values in 10 of 10 tumor cell lines tested. CEMB-induced cytotoxicity is accompanied by activation of downstream effector caspases (caspases 3 and 7) and by upstream initiator caspases involved in both the extrinsic (caspase 8) and intrinsic (caspase 9) apoptotic pathways. By using short interfering RNAs (siRNA), we show evidence that knockdown of caspase 8, DR4, Apaf-1, and Bid impairs CEMB-induced cell death. Similar to other proapoptotic synthetic triterpenoid compounds, CEMB-induced apoptosis involved endoplasmic reticulum stress, as shown by partial rescue of tumor cells by siRNA-mediated knockdown of expression of genes involved in the unfolded protein response such as IRE1 alpha, PERK, and ATF6. Altogether, our results suggest that CEMB stimulates several apoptotic pathways in cancer cells, suggesting that this compound should be evaluated further as a potential agent for cancer therapy. Mol Cancer Ther; 10(9); 1635-43. (C)2011 AACR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innate immunity recognizes and resists various pathogens; however, the mechanisms regulating pathogen versus non-pathogen discrimination are still imprecisely understood. Here, we demonstrate that pathogen-specific activation of TLR2 upon infection with Mycobacterium bovis BCG, in comparison with other pathogenic microbes, including Salmonella typhimurium and Staphylococcus aureus, programs macrophages for robust up-regulation of signaling cohorts of Wnt-beta-catenin signaling. Signaling perturbations or genetic approaches suggest that infection-mediated stimulation of Wnt-beta-catenin is vital for activation of Notch1 signaling. Interestingly, inducible NOS (iNOS) activity is pivotal for TLR2-mediated activation of Wnt-beta-catenin signaling as iNOS(-/-) mice demonstrated compromised ability to trigger activation of Wnt-beta-catenin signaling as well as Notch1-mediated cellular responses. Intriguingly, TLR2-driven integration of iNOS/NO, Wnt-beta-catenin, and Notch1 signaling contributes to its capacity to regulate the battery of genes associated with T(Reg) cell lineage commitment. These findings reveal a role for differential stimulation of TLR2 in deciding the strength of Wnt-beta-catenin signaling, which together with signals from Notch1 contributes toward the modulation of a defined set of effector functions in macrophages and thus establishes a conceptual framework for the development of novel therapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we have tested the cytotoxic and DNA damage activity of two novel bis-1,2,4 triazole derivatives, namely 1,4-bis[5-(5-mercapto-1,3,4-oxadiazol-2-yl-methyl)-thio4-(p-tolyl)-1,2 ,4-triazol-3-yl]-butane (MNP-14) and 1,4-bis[5-(carbethoxy-methyl)-thio-4-(p-ethoxy phenyl) -1,2,4-triazol-3-yl]-butane (MNP-16). The effect of these molecules on cellular apoptosis was also determined. The in-vitro cytotoxicity was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay as well as Trypan blue dye exclusion methods against human acute lymphoblastic leukemia (MOLT4) and lung cancer cells (A549). Our results showed that MNP-16 induced significant cytotoxicity (IC50 of 3-5 mu M) compared with MNP-14. The cytotoxicity induced by MNP-16 was time and concentration dependent. The cell cycle analysis by flow cytometry (fluorescence-activated cell sorting [FACS]) revealed that though there was a significant increase in the apoptotic population (sub-G1 phase) with an increased concentration of MNP-14 and 16, there was no cell cycle arrest. Further, the comet assay results indicated considerable DNA

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surfactant protein A (SP-A), which is a lung innate immune system component, is known to bind glycolipids present at the cell surface of a mycobacterial pathogen. Lipoarabinomannan (LAM), a component of mycobacterial thick, waxy cell wall, is one of the glycolipid ligands for SP-A. In order to assess binding of synthetic glycolipids with SP-A and the glycosidic linkage preferences for the interaction, beta-arabinofuranoside trisaccharide glycolipids constituted with beta-(1 -> 2), beta-(1 -> 3) and beta-(1 -> 2), beta-(1 -> 5) linkages relevant to LAM were synthesized through chemical glycosylations. The efficacies of synthetic glycolipids to interact with SP-A were assessed by using the surface plasmon resonance (SPR) technique, from which association-dissociation rate constants and equilibrium binding constants were derived. The equilibrium binding constants of the interaction of two constitutionally varying beta-arabinofuranoside glycolipids with SP-A were found to be in the millimolar range. A comparison of the results with few alpha-anomeric arabinofuranoside glycolipids showed that glycolipids with beta-anomeric linkages were having relatively lower equilibrium binding constants than those with alpha-anomeric linkages in binding to the protein, whereas oligosaccharides alone, without lipidic chains, exhibited higher equilibrium binding constants. Further, the synthetic compounds inhibited the growth of mycobacteria and affected sliding motilities of the bacteria, although to an extent relatively lesser than that of synthetic compounds constituted with alpha-anomeric linkages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pathogenic rnycobacteria, including Mycobacterium tuberculosis and Mycobacterium bovis, cause significant morbidity and mortality worldwide. However, the vaccine strain Mycobacterium bovis BCG, unlike virulent strains, triggers extensive apoptosis of infected macrophages, a step necessary for the elicitation of robust protective immunity. We here demonstrate that M. bovis BCG triggers Toll-like receptor 2 (TLR2)-dependent microRNA-155 (miR-155) expression, which involves signaling cross talk among phosphatidylinositol 3-kinase (PI3K), protein kinase C delta (PKC delta), and mitogen-activated protein kinases (MAPKs) and recruitment of NF-kappa B and c-ETS to miR-155 promoter. Genetic and signaling perturbations presented the evidence that miR-155 regulates PKA signaling by directly targeting a negative regulator of PKA, protein kinase inhibitor alpha (PKI-alpha). Enhanced activation of PKA signaling resulted in the generation of PKA C-alpha; phosphorylation of MSK1, cyclic AMP response element binding protein (CREB), and histone H3; and recruitment of phospho-CREB to the apoptotic gene promoters. The miR-155-triggered activation of caspase-3, BAK1, and cytochrome c translocation involved signaling integration of MAPKs and epigenetic or posttranslational modification of histones or CREB. Importantly, M. bovis BCG infection-induced apoptosis was severely compromised in macrophages derived from miR-155 knockout mice. Gain-of-function and loss-of-function studies validated the requirement of miR-155 for M. bovis BCG's ability to trigger apoptosis. Overall, M. bovis BCG-driven miR-155 dictates cell fate decisions of infected macrophages, strongly implicating a novel role for miR-155 in orchestrating cellular reprogramming during immune responses to mycobacterial infection.