990 resultados para Attention--Testing.
Resumo:
A model of laminar visual cortical dynamics proposes how 3D boundary and surface representations of slated and curved 3D objects and 2D images arise. The 3D boundary representations emerge from interactions between non-classical horizontal receptive field interactions with intracorticcal and intercortical feedback circuits. Such non-classical interactions contextually disambiguate classical receptive field responses to ambiguous visual cues using cells that are sensitive to angles and disparity gradients with cortical areas V1 and V2. These cells are all variants of bipole grouping cells. Model simulations show how horizontal connections can develop selectively to angles, how slanted surfaces can activate 3D boundary representations that are sensitive to angles and disparity gradients, how 3D filling-in occurs across slanted surfaces, how a 2D Necker cube image can be represented in 3D, and how bistable Necker cuber percepts occur. The model also explains data about slant aftereffects and 3D neon color spreading. It shows how habituative transmitters that help to control developement also help to trigger bistable 3D percepts and slant aftereffects, and how attention can influence which of these percepts is perceived by propogating along some object boundaries.
Resumo:
A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered circuits help to realize the processes of developement, learning, perceptual grouping, attention, and 3D vision through a combination of bottom-up, horizontal, and top-down interactions. A key theme is that the mechanisms which enable developement and learning to occur in a stable way imply properties of adult behavior. These results thus begin to unify three fields: infant cortical developement, adult cortical neurophysiology and anatomy, and adult visual perception. The identified cortical mechanisms promise to generalize to explain how other perceptual and cognitive processes work.
Resumo:
The concept of attention has been used in many senses, often without clarifying how or why attention works as it does. Attention, like consciousness, is often described in a disembodied way. The present article summarizes neural models and supportive data and how attention is linked to processes of learning, expectation, competition, and consciousness. A key them is that attention modulates cortical self-organization and stability. Perceptual and cognitive neocortex is organized into six main cell layers, with characteristic sub-lamina. Attention is part of unified design of bottom-up, horizontal, and top-down interactions among indentified cells in laminar cortical circuits. Neural models clarify how attention may be allocated during processes of visual perception, learning and search; auditory streaming and speech perception; movement target selection during sensory-motor control; mental imagery and fantasy; and hallucination during mental disorders, among other processes.
Resumo:
Air Force Office of Scientific Research (F49620-01-1-0397); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624)
Resumo:
This article develops the Synchronous Matching Adaptive Resonance Theory (SMART) neural model to explain how the brain may coordinate multiple levels of thalamocortical and corticocortical processing to rapidly learn, and stably remember, important information about a changing world. The model clarifies how bottom-up and top-down processes work together to realize this goal, notably how processes of learning, expectation, attention, resonance, and synchrony are coordinated. The model hereby clarifies, for the first time, how the following levels of brain organization coexist to realize cognitive processing properties that regulate fast learning and stable memory of brain representations: single cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their interactions; aggregate cell recordings, such as current-source densities and local field potentials; and single cell and large-scale inter-areal oscillations in the gamma and beta frequency domains. In particular, the model predicts how laminar circuits of multiple cortical areas interact with primary and higher-order specific thalamic nuclei and nonspecific thalamic nuclei to carry out attentive visual learning and information processing. The model simulates how synchronization of neuronal spiking occurs within and across brain regions, and triggers STDP. Matches between bottom-up adaptively filtered input patterns and learned top-down expectations cause gamma oscillations that support attention, resonance, and learning. Mismatches inhibit learning while causing beta oscillations during reset and hypothesis testing operations that are initiated in the deeper cortical layers. The generality of learned recognition codes is controlled by a vigilance process mediated by acetylcholine.
Resumo:
Do humans and animals learn exemplars or prototypes when they categorize objects and events in the world? How are different degrees of abstraction realized through learning by neurons in inferotemporal and prefrontal cortex? How do top-down expectations influence the course of learning? Thirty related human cognitive experiments (the 5-4 category structure) have been used to test competing views in the prototype-exemplar debate. In these experiments, during the test phase, subjects unlearn in a characteristic way items that they had learned to categorize perfectly in the training phase. Many cognitive models do not describe how an individual learns or forgets such categories through time. Adaptive Resonance Theory (ART) neural models provide such a description, and also clarify both psychological and neurobiological data. Matching of bottom-up signals with learned top-down expectations plays a key role in ART model learning. Here, an ART model is used to learn incrementally in response to 5-4 category structure stimuli. Simulation results agree with experimental data, achieving perfect categorization in training and a good match to the pattern of errors exhibited by human subjects in the testing phase. These results show how the model learns both prototypes and certain exemplars in the training phase. ART prototypes are, however, unlike the ones posited in the traditional prototype-exemplar debate. Rather, they are critical patterns of features to which a subject learns to pay attention based on past predictive success and the order in which exemplars are experienced. Perturbations of old memories by newly arriving test items generate a performance curve that closely matches the performance pattern of human subjects. The model also clarifies exemplar-based accounts of data concerning amnesia.
Resumo:
Memories in Adaptive Resonance Theory (ART) networks are based on matched patterns that focus attention on those portions of bottom-up inputs that match active top-down expectations. While this learning strategy has proved successful for both brain models and applications, computational examples show that attention to early critical features may later distort memory representations during online fast learning. For supervised learning, biased ARTMAP (bARTMAP) solves the problem of over-emphasis on early critical features by directing attention away from previously attended features after the system makes a predictive error. Small-scale, hand-computed analog and binary examples illustrate key model dynamics. Twodimensional simulation examples demonstrate the evolution of bARTMAP memories as they are learned online. Benchmark simulations show that featural biasing also improves performance on large-scale examples. One example, which predicts movie genres and is based, in part, on the Netflix Prize database, was developed for this project. Both first principles and consistent performance improvements on all simulation studies suggest that featural biasing should be incorporated by default in all ARTMAP systems. Benchmark datasets and bARTMAP code are available from the CNS Technology Lab Website: http://techlab.bu.edu/bART/.
Resumo:
Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-24877); Office of Naval Research (N00014-91-J-4100)
Resumo:
A neural theory is proposed in which visual search is accomplished by perceptual grouping and segregation, which occurs simultaneous across the visual field, and object recognition, which is restricted to a selected region of the field. The theory offers an alternative hypothesis to recently developed variations on Feature Integration Theory (Treisman, and Sato, 1991) and Guided Search Model (Wolfe, Cave, and Franzel, 1989). A neural architecture and search algorithm is specified that quantitatively explains a wide range of psychophysical search data (Wolfe, Cave, and Franzel, 1989; Cohen, and lvry, 1991; Mordkoff, Yantis, and Egeth, 1990; Treisman, and Sato, 1991).
Resumo:
A new neural network architecture for spatial patttern recognition using multi-scale pyramida1 coding is here described. The network has an ARTMAP structure with a new class of ART-module, called Hybrid ART-module, as its front-end processor. Hybrid ART-module, which has processing modules corresponding to each scale channel of multi-scale pyramid, employs channels of finer scales only if it is necesssary to discriminate a pattern from others. This process is effected by serial match tracking. Also the parallel match tracking is used to select the spatial location having most salient feature and limit its attention to that part.
Resumo:
In a constantly changing world, humans are adapted to alternate routinely between attending to familiar objects and testing hypotheses about novel ones. We can rapidly learn to recognize and narne novel objects without unselectively disrupting our memories of familiar ones. We can notice fine details that differentiate nearly identical objects and generalize across broad classes of dissimilar objects. This chapter describes a class of self-organizing neural network architectures--called ARTMAP-- that are capable of fast, yet stable, on-line recognition learning, hypothesis testing, and naming in response to an arbitrary stream of input patterns (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992; Carpenter, Grossberg, and Reynolds, 1991). The intrinsic stability of ARTMAP allows the system to learn incrementally for an unlimited period of time. System stability properties can be traced to the structure of its learned memories, which encode clusters of attended features into its recognition categories, rather than slow averages of category inputs. The level of detail in the learned attentional focus is determined moment-by-moment, depending on predictive success: an error due to over-generalization automatically focuses attention on additional input details enough of which are learned in a new recognition category so that the predictive error will not be repeated. An ARTMAP system creates an evolving map between a variable number of learned categories that compress one feature space (e.g., visual features) to learned categories of another feature space (e.g., auditory features). Input vectors can be either binary or analog. Computational properties of the networks enable them to perform significantly better in benchmark studies than alternative machine learning, genetic algorithm, or neural network models. Some of the critical problems that challenge and constrain any such autonomous learning system will next be illustrated. Design principles that work together to solve these problems are then outlined. These principles are realized in the ARTMAP architecture, which is specified as an algorithm. Finally, ARTMAP dynamics are illustrated by means of a series of benchmark simulations.
Resumo:
A neural model is proposed of how laminar interactions in the visual cortex may learn and recognize object texture and form boundaries. The model brings together five interacting processes: region-based texture classification, contour-based boundary grouping, surface filling-in, spatial attention, and object attention. The model shows how form boundaries can determine regions in which surface filling-in occurs; how surface filling-in interacts with spatial attention to generate a form-fitting distribution of spatial attention, or attentional shroud; how the strongest shroud can inhibit weaker shrouds; and how the winning shroud regulates learning of texture categories, and thus the allocation of object attention. The model can discriminate abutted textures with blurred boundaries and is sensitive to texture boundary attributes like discontinuities in orientation and texture flow curvature as well as to relative orientations of texture elements. The model quantitatively fits a large set of human psychophysical data on orientation-based textures. Object boundar output of the model is compared to computer vision algorithms using a set of human segmented photographic images. The model classifies textures and suppresses noise using a multiple scale oriented filterbank and a distributed Adaptive Resonance Theory (dART) classifier. The matched signal between the bottom-up texture inputs and top-down learned texture categories is utilized by oriented competitive and cooperative grouping processes to generate texture boundaries that control surface filling-in and spatial attention. Topdown modulatory attentional feedback from boundary and surface representations to early filtering stages results in enhanced texture boundaries and more efficient learning of texture within attended surface regions. Surface-based attention also provides a self-supervising training signal for learning new textures. Importance of the surface-based attentional feedback in texture learning and classification is tested using a set of textured images from the Brodatz micro-texture album. Benchmark studies vary from 95.1% to 98.6% with attention, and from 90.6% to 93.2% without attention.
Resumo:
Cream liqueurs manufactured by a one-step process, where alcohol was added before homogenisation, were more stable than those processed by a two -step process which involved addition of alcohol after homogenisation. Using the one-step process, it was possible to produce creaming-stable liqueurs by using one pass through a homogeniser (27.6 MPa) equipped with "liquid whirl" valves. Test procedures to characterise cream liqueurs and to predict shelf life were studied in detail. A turbidity test proved simple, rapid and sensitive for characterising particle size and homogenisation efficiency. Prediction of age thickening/gelation in cream liqueurs during incubation at 45 °C depended on the age of the sample when incubated. Samples that gelled at 45 °C may not do so at ambient temperature. Commercial cream liqueurs were similar in gross chemical composition, and unlike experimentally produced liqueurs, these did not exhibit either age-gelation at ambient or elevated temperatures. Solutions of commercial sodium caseinates from different sources varied in their calcium sensitivity. When incorporated into cream liqueurs, caseinates influenced the rate of viscosity increase, coalescence and, possibly, gelation during incubated storage. Mild heat and alcohol treatment modified the properties of caseinate used to stabilise non-alcoholic emulsions, while the presence of alcohol in emulsions was important in preventing clustering of globules. The response to added trisodium citrate varied. In many cases, addition of the recommended level (0.18%) did not prevent gelation. Addition of small amounts of NaOH with 0.18 % trisodium citrate before homogenisation was beneficial. The stage at which citrate was added during processing was critical to the degree of viscosity increase (as opposed to gelation) in the product during 45 °C incubation. The component responsible for age-gelation was present in the milk-solids non fat portion of the cream and variations in the creams used were important in the age-gelation phenomenon Results indicated that, in addition to possibly Ca++, the micellar casein portion of serum may play a role in gelation. The role of the low molecular weight surfactants, sodium stearoyl lactylate and monodiglycerides in preventing gelation, was influenced by the presence of trisodium citrate. Clustering of fat globules and age-gelation were inhibited when 0.18 % citrate was included. Inclusion of sodium stearoyl lactylate, but not monodiglycerides, reduced the extent of viscosity increase at 45 °C in citrate containing liqueurs.
Resumo:
Knowing one's HIV status is particularly important in the setting of recent tuberculosis (TB) exposure. Blood tests for assessment of tuberculosis infection, such as the QuantiFERON Gold in-tube test (QFT; Cellestis Limited, Carnegie, Victoria, Australia), offer the possibility of simultaneous screening for TB and HIV with a single blood draw. We performed a cross-sectional analysis of all contacts to a highly infectious TB case in a large meatpacking factory. Twenty-two percent were foreign-born and 73% were black. Contacts were tested with both tuberculin skin testing (TST) and QFT. HIV testing was offered on an opt-out basis. Persons with TST >or=10 mm, positive QFT, and/or positive HIV test were offered latent TB treatment. Three hundred twenty-six contacts were screened: TST results were available for 266 people and an additional 24 reported a prior positive TST for a total of 290 persons with any TST result (89.0%). Adequate QFT specimens were obtained for 312 (95.7%) of persons. Thirty-two persons had QFT results but did not return for TST reading. Twenty-two percent met the criteria for latent TB infection. Eighty-eight percent accepted HIV testing. Two (0.7%) were HIV seropositive; both individuals were already aware of their HIV status, but one had stopped care a year previously. None of the HIV-seropositive persons had latent TB, but all were offered latent TB treatment per standard guidelines. This demonstrates that opt-out HIV testing combined with QFT in a large TB contact investigation was feasible and useful. HIV testing was also widely accepted. Pairing QFT with opt-out HIV testing should be strongly considered when possible.
Resumo:
In recent years, the storage and use of residual newborn screening (NBS) samples has gained attention. To inform ongoing policy discussions, this article provides an update of previous work on new policies, educational materials, and parental options regarding the storage and use of residual NBS samples. A review of state NBS Web sites was conducted for information related to the storage and use of residual NBS samples in January 2010. In addition, a review of current statutes and bills introduced between 2005 and 2009 regarding storage and/or use of residual NBS samples was conducted. Fourteen states currently provide information about the storage and/or use of residual NBS samples. Nine states provide parents the option to request destruction of the residual NBS sample after the required storage period or the option to exclude the sample for research uses. In the coming years, it is anticipated that more states will consider policies to address parental concerns about the storage and use of residual NBS samples. Development of new policies regarding storage and use of residual NBS samples will require careful consideration of impact on NBS programs, parent and provider educational materials, and respect for parents among other issues.