940 resultados para Amperometry (Instrumentation)
Resumo:
This report describes a study about the feasibility of using a conventional digital camera, a cell-phone camera, an optical microscope, and a scanner as digital image capture devices on printed microzones. An array containing nine circular zones was drawn using graphics software and printed onto transparency film by a laser printer. Due to its superior analytical performance, the scanner was chosen for the quantitative determination of Fe2+ in pharmaceutical samples. The data achieved using scanned images did not differ statistically from those attained by the reference spectrophotometric method at the confidence level of 0.05.
Resumo:
The constant evolution of science and the growing demand for new technologies have led to new techniques in instrumentation that can improve detection, separation, resolution, and peak capacity. Comprehensive two-dimensional liquid chromatography (LC×LC) is presented as a powerful tool in complex sample analyses. During an analysis, a sample is subjected to two independent separation mechanisms that are combined, resulting in increased resolving power. For appropriate application of LC×LC, understanding the influence of parameters that require optimization is necessary. The main purpose of optimization is to predict the combination of stationary phases, separation conditions, and instrumental requirements to obtain the best separation performance. This review discusses theoretical, intrumental, and chemometric aspects of LC×LC and focuses on its applications in foods. It aims to provide a clear understanding of the aspects that can be used as strategies in the optimization of this analytical method.
Resumo:
A colorimetric kit for methanol detection in ethanol-containing fuels and ease of use in the field was developed and tested. The analysis can detect the presence of methanol in fuels when exceeding specification (0.5% v/v) in about 20 min and its simple instrumentation does not require a specialist. The kit method was successfully validated at gas stations located in São Paulo State and the Federal District.
Resumo:
A musically stimulating nvironment is of great significance when considering the opportunities for development and learning that are offered to children in day nurseries. Moreover, the quality of musical activities also has great significance for the musical development of growing children. Young children are always striving to create meaning and understanding; they influence and are influenced by the context in which they are situated. The purpose of this study is to investigate the planned music activities in the musical learning environment of seven toddler’s groups in day nurseries, based on four different aspects: the texts of children’s songs, the melodies of children’s songs, the basic elements of music and the use of instrumentation. The data has been gathered by video observation of the planned music activities. The age of the children studied ranged from 11 months to 3 years and 11 months, and on average there were 13 children in each group. The study involved a total of just over 90 children and nine educators. The methodological approaches are hermeneutic as well as videographic, and they are applied to the analysis as required. The approaches are well suited to an understanding of the planned music activities where the individual’s communications and actions are studied. The results of the study show that educators impart a cultural heritage to the children in the form of old traditional songs, but they also act as intermediaries for newer children's songs. They focus on actively on the text content of the children’s songs in their interaction with the children, but do not address the meaning of the text. Furthermore, while the educators use music sessions for the children to develop, among other things, an understanding of language and social skills, they do not use the sessions to develop the children’s musical skills. The educators could, to a much greater extent than they now do, direct the children's attention to the basic elements of music, and conduct meta-cognitive dialogues with the children. They use a large repertoire of children's songs, which are, however, often too demanding for the children’s voices to cope with. In addition, the educators do not plan, in any significant way, activities for the toddlers in order to help them develop the accuracy of their vocal tones. With regard to the use of instruments, the educators focus, in their interaction with the children, is placed on both the usage of the instruments and knowledge about the instruments. Regarding the use of instruments the study shows that the children’s musical expression takes place in an environment that includes both melody and rhythm instruments. It is clear that children are actively interested in the constructed instrument environment, because for long periods of time they independently play and experiment with instruments.
Resumo:
Bacteriorhodopsin (BR) is a photosensitive protein which functions as a light-driven proton pump. Due to its photoactivity, BR could be used in photosensing and information processing which has inspired researchers to study the photoelectric response and the appropriate measurement instrumentation for BR. In this thesis, the measurement instrumentation connected to a dry BR sensor was confirmed to affect the photovoltage response measured by using voltage amplifiers. Changing of the input impedance of the measurement instrumentation was shown to alter a part of the measured photovoltage response. The photocurrent measurements using transimpedance amplifier and the presented electrical equivalent circuit were used to show that the photocurrent measurements have no significant effect on the photoelectric response. The photocurrent was shown to be a derivate of the photovoltage response measured from the dry BR sensor when it was compared to the response measured with a voltage amplifier. This confirmed that another part of the photovoltage response was not affected by the measurement instrumentation. The time-variant behavior of the dry BR sensor was confirmed in both the photocurrent and the photovoltage measurements. This was caused by the fact that the capacitance of the dry BR sensor changes with the excitation light intensity.
Resumo:
This paper presents a new approach in tomographic instrumentation for agriculture based on Compton scattering, which allows for the simultaneous measurements of density and moisture of soil samples. Compton tomography is a technique that can be used to obtain a spatial map of electronic density of samples. Quantitative results can be obtained by using a reconstruction algorithm that takes into account the absorption of incident and scattered radiation. Results show a coefficient of linear correlation better than 0.81, when comparison is made between soil density measurements based on this method and direct transmission tomography. For soil water contents, a coefficient of linear correlation better than 0.79 was found when compared with measurements obtained by time domain reflectrometry (TDR). In addition, a set of Compton scatter images are presented to illustrate the efficacy of this imaging technique, which makes possible improved spatial variability analysis of pre-established planes.
Resumo:
Reaktorisydämen valvonnalla varmistetaan, että polttoaineelta vaaditut termiset marginaalit toteutuvat ja polttoaineen suojakuori säilyy ehjänä. Olkiluodon kiehutusvesilaitoksen nykyinen sydämen valvontajärjestelmä koostuu SIMULATE-3-sydänsimulaattoriohjelmasta, reaktorisydämen instrumentoinnista, termisen tehon laskentaohjelmasta, tiedonkeruuohjelmista ja käynnistysautomatiikasta. Uusi järjestelmä koostuu näiden lisäksi GARDEL-ohjelmasta, joka on kehitetty kevytvesireaktoreiden sydämen käytön suunnitteluun ja valvontaan. GARDEL käyttää laskentaan samoja ohjelmia, jotka ovat jo Olkiluodon kiehutusvesilaitoksella käytössä. Tämän työn tarkoituksena oli verrata nykyistä ja uutta sydämen valvontajärjestelmää Olkiluodon kiehutusvesilaitoksella. Työssä tutkittiin LPRM-detektorien kalibroinnin jälkeisen datan käsittelyä, palamapäivitystä, stabiilisuuslaskentaa ja adaptiivisia menetelmiä. Järjestelmien vertailuun käytettiin Olkiluoto 2 -laitosyksiköltä käyttöjaksolta 31 (2011–2012) saatuja laskentuloksia. Tulosten perusteella havaittiin uuden järjestelmän laskennassa yksittäisiä virheitä, jotka tulee korjata. Lisäksi uuden järjestelmän toiminnasta tarvitaan lisäselvitystä.
Resumo:
Erotusvahvistin on instrumentointivahvistin, jonka tulo ja lähtö ovat galvaanisesti erotettu toisistaan. Erotusvahvistimia käytetään galvaanista erotusta vaativissa sovelluksissa, muun muassa sairaalalaitteissa. Teollisuudessa on olemassa sovelluksia, joihin tarvittaisiin analogisia erotusvahvistimia, mutta ei tiedetä onko analogisilla erotusvahvistimilla riittävän hyvät komponenttiarvot. Tässä työssä selvitetään analogisten erotusvahvistimien tämänhetkisiä ominaisuuksia, hintoja ja komponenttiarvoja neljältä eri valmistajalta.
Resumo:
This work is a study of the implementation of a classical controller using a tuning method referred to as IMC (Internal Model Control) and aimed at the reduction of electrical energy consumption by the appropriate relation between energy consumption and the cooling time with forced air. The supervisory system installed was able to manipulate the variable of frequency of the signal power of the exhaust fan engine (forced air module), to accelerate or decelerate the loss of heat from the product to be cooled by airflow variation that passes through the mass of the produce. The results demonstrated a reduction in energy consumption from 64% and an increase of only 8% in the cooling time to the system using PI/IMC (Proportional - Integral with IMC) tuning method compared with the system in its operating nominal condition. This PI/IMC control may be implemented directly in a frequency converter, without the need to purchase a computer or PLC (programmable logic controller) to run the dedicated application, increasing its economical viability.
Resumo:
The process of cold storage chambers contributes largely to the quality and longevity of stored products. In recent years, it has been intensified the study of control strategies in order to decrease the temperature change inside the storage chamber and to reduce the electric power consumption. This study has developed a system for data acquisition and process control, in LabVIEW language, to be applied in the cooling system of a refrigerating chamber of 30m³. The use of instrumentation and the application developed fostered the development of scientific experiments, which aimed to study the dynamic behavior of the refrigeration system, compare the performance of control strategies and the heat engine, even due to the controlled temperature, or to the electricity consumption. This system tested the strategies for on-off control, PID and fuzzy. Regarding power consumption, the fuzzy controller showed the best result, saving 10% when compared with other tested strategies.
Resumo:
Due to the importance of the environment on animal production and thus environmental control, the study aims to build a system for monitoring and control the meteorological variables, temperature and relative humidity, low cost, which can be associated with an evaporative cooling system (ECS). The system development included all the stages of assembly, test and laboratory calibration, and later the validation of the equipment carried in the field. The validation step showed results which allowed concluding that the system can be safely used in the monitoring of these variables. The controller was efficient in management of the microclimate in the waiting corral and allowed the maintenance of the air temperature within the comfort range for dairy cattle in pre-milking with averaged 25.09 ºC during the afternoon. The equipment showed the lower cost (R$ 325.76) when compared to other middle market (R$ 450.00).
Resumo:
Intensive and critical care nursing is a speciality in its own right and with its own nature within the nursing profession. This speciality poses its own demands for nursing competencies. Intensive and critical care nursing is focused on severely ill patients and their significant others. The patients are comprehensively cared for, constantly monitored and their vital functions are sustained artificially. The main goal is to win time to cure the cause of the patient’s situation or illness. The purpose of this empirical study was i) to describe and define competence and competence requirements in intensive and critical care nursing, ii) to develop a basic measurement scale for competence assessment in intensive and critical care nursing for graduating nursing students, and iii) to describe and evaluate graduating nursing students’ basic competence in intensive and critical care nursing by seeking the reference basis of self-evaluated basic competence in intensive and critical care nursing from ICU nurses. However, the main focus of this study was on the outcomes of nursing education in this nursing speciality. The study was carried out in different phases: basic exploration of competence (phase 1 and 2), instrumentation of competence (phase 3) and evaluation of competence (phase 4). Phase 1 (n=130) evaluated graduating nursing students’ basic biological and physiological knowledge and skills for working in intensive and critical care with Basic Knowledge Assessment Tool version 5 (BKAT-5, Toth 2012). Phase 2 focused on defining competence in intensive and critical care nursing with the help of literature review (n=45 empirical studies) as well as competence requirements in intensive and critical care nursing with the help of experts (n=45 experts) in a Delphi study. In phase 3 the scale Intensive and Critical Care Nursing Competence Scale (ICCN-CS) was developed and tested twice (pilot test 1: n=18 students and n=12 nurses; pilot test 2: n=56 students and n=54 nurses). Finally, in phase 4, graduating nursing students’ competence was evaluated with ICCN-CS and BKAT version 7 (Toth 2012). In order to develop a valid assessment scale of competence for graduating nursing students and to evaluate and establish the competence of graduating nursing students, empirical data were retrieved at the same time from both graduating nursing students (n=139) and ICU nurses (n=431). Competence can be divided into clinical and general professional competence. It can be defined as a specific knowledge base, skill base, attitude and value base and experience base of nursing and the personal base of an intensive and critical care nurse. Personal base was excluded in this self-evaluation based scale. The ICCN-CS-1 consists of 144 items (6 sum variables). Finally, it became evident that the experience base of competence is not a suitable sum variable in holistic intensive and critical care competence scale for graduating nursing students because of their minor experience in this special nursing area. ICCN-CS-1 is a reliable and tolerably valid scale for use among graduating nursing students and ICU nurses Among students, basic competence of intensive and critical care nursing was self-rated as good by 69%, as excellent by 25% and as moderate by 6%. However, graduating nursing students’ basic biological and physiological knowledge and skills for working in intensive and critical care were poor. The students rated their clinical and professional competence as good, and their knowledge base and skill base as moderate. They gave slightly higher ratings for their knowledge base than skill base. Differences in basic competence emerged between graduating nursing students and ICU nurses. The students’ self-ratings of both their basic competence and clinical and professional competence were significantly lower than the nurses’ ratings. The students’ self-ratings of their knowledge and skill base were also statistically significantly lower than nurses’ ratings. However, both groups reported the same attitude and value base, which was excellent. The strongest factor explaining students’ conception of their competence was their experience of autonomy in nursing. Conclusions: Competence in intensive and critical care nursing is a multidimensional concept. Basic competence in intensive and critical care nursing can be measured with self-evaluation based scale but alongside should be used an objective evaluation method. Graduating nursing students’ basic competence in intensive and critical care nursing is good but their knowledge and skill base are moderate. Especially the biological and physiological knowledge base is poor. Therefore in future in intensive and critical care nursing education should be focused on both strengthening students’ biological and physiological knowledge base and on strengthening their overall skill base. Practical implications are presented for nursing education, practice and administration. In future, research should focus on education methods and contents, mentoring of clinical practice and orientation programmes as well as further development of the scale.
Resumo:
Att övervaka förekomsten av giftiga komponenter i naturliga vattendrag är nödvändigt för människans välmående. Eftersom halten av föroreningar i naturens ekosystem bör hållas möjligast låg, pågår en ständig jakt efter kemiska analysmetoder med allt lägre detektionsgränser. I dagens läge görs miljöanalyser med dyr och sofistikerad instrumentering som kräver mycket underhåll. Jonselektiva elektroder har flera goda egenskaper som t.ex. bärbarhet, låg energiförbrukning, och dessutom är de relativt kostnadseffektiva. Att använda jonselektiva elektroder vid miljöanalyser är möjligt om deras känslighetsområde kan utvidgas genom att sänka deras detektionsgränser. För att sänka detektionsgränsen för Pb(II)-selektiva elektroder undersöktes olika typer av jonselektiva membran som baserades på polyakrylat-kopolymerer, PVC och PbS/Ag2S. Fast-fas elektroder med membran av PbS/Ag2S är i allmänhet enklare och mer robusta än konventionella elektroder vid spårämnesanalys av joniska föroreningar. Fast-fas elektrodernas detektionsgräns sänktes i detta arbete med en nyutvecklad galvanostatisk polariseringsmetod och de kunde sedan framgångsrikt användas för kvantitativa bestämningar av bly(II)-halter i miljöprov som hade samlats in i den finska skärgården nära tidigare industriområden. Analysresultaten som erhölls med jonselektiva elektroder bekräftades med andra analytiska metoder. Att sänka detektionsgränsen m.hj.a. den nyutvecklade polariseringsmetoden möjliggör bestämning av låga och ultra-låga blyhalter som inte kunde nås med klassisk potentiometri. Den verkliga fördelen med att använda dessa blyselektiva elektroder är möjligheten att utföra mätningar i obehandlade miljöprov trots närvaron av fasta partiklar vilket inte är möjligt att göra med andra analysmetoder. Jag väntar mig att den nyutvecklade polariseringsmetoden kommer att sätta en trend i spårämnesanalys med jonselektiva elektroder.
Resumo:
Prostate-specific antigen (PSA) is a marker that is commonly used in estimating prostate cancer risk. Prostate cancer is usually a slowly progressing disease, which might not cause any symptoms whatsoever. Nevertheless, some cases of cancer are aggressive and need to be treated before they become life-threatening. However, the blood PSA concentration may rise also in benign prostate diseases and using a single total PSA (tPSA) measurement to guide the decision on further examinations leads to many unnecessary biopsies, over-detection, and overtreatment of indolent cancers which would not require treatment. Therefore, there is a need for markers that would better separate cancer from benign disorders, and would also predict cancer aggressiveness. The aim of this study was to evaluate whether intact and nicked forms of free PSA (fPSA-I and fPSA-N) or human kallikrein-related peptidase 2 (hK2) could serve as new tools in estimating prostate cancer risk. First, the immunoassays for fPSA-I and free and total hK2 were optimized so that they would be less prone to assay interference caused by interfering factors present in some blood samples. The optimized assays were shown to work well and were used to study the marker concentrations in the clinical sample panels. The marker levels were measured from preoperative blood samples of prostate cancer patients scheduled for radical prostatectomy. The association of the markers with the cancer stage and grade was studied. It was found that among all tested markers and their combinations especially the ratio of fPSA-N to tPSA and ratio of free PSA (fPSA) to tPSA were associated with both cancer stage and grade. They might be useful in predicting the cancer aggressiveness, but further follow-up studies are necessary to fully evaluate the significance of the markers in this clinical setting. The markers tPSA, fPSA, fPSA-I and hK2 were combined in a statistical model which was previously shown to be able to reduce unnecessary biopsies when applied to large screening cohorts of men with elevated tPSA. The discriminative accuracy of this model was compared to models based on established clinical predictors in reference to biopsy outcome. The kallikrein model and the calculated fPSA-N concentrations (fPSA minus fPSA-I) correlated with the prostate volume and the model, when compared to the clinical models, predicted prostate cancer in biopsy equally well. Hence, the measurement of kallikreins in a blood sample could be used to replace the volume measurement which is time-consuming, needs instrumentation and skilled personnel and is an uncomfortable procedure. Overall, the model could simplify the estimation of prostate cancer risk. Finally, as the fPSA-N seems to be an interesting new marker, a direct immunoassay for measuring fPSA-N concentrations was developed. The analytical performance was acceptable, but the rather complicated assay protocol needs to be improved until it can be used for measuring large sample panels.