916 resultados para Alberto Lacerda, Mário Cesariny, Surrealismo
Resumo:
In their controversial paper 'After-birth abortion', Alberto Giubilini and Francesca Minerva argue that there is no rational basis for allowing abortion but prohibiting infanticide ('after-birth abortion'). We ought in all consistency either to allow both or prohibit both. This paper rejects their claim, arguing that much-neglected considerations in philosophical discussions of this issue are capable of explaining why we currently permit abortion in some cases, while prohibiting infanticide.
Resumo:
Classroom emotional climates are interrelated with students’ engagement with university courses. Despite growing interest in emotions and emotional climate research, little is known about the ways in which social interactions and different subject matter mediate emotional climates in preservice science teacher education classes. In this study we investigated the emotional climate and associated classroom interactions in a preservice science teacher education class. We were interested in the ways in which salient classroom interactions were related to the emotional climate during lessons centered on debates about science-based issues (e.g., nuclear energy alternatives). Participants used audience response technology to indicate their perceptions of the emotional climate. Analysis of conversation for salient video clips and analysis of non-verbal conduct (acoustic parameters, body movements, and facial expressions) supplemented emotional climate data. One key contribution that this study makes to preservice science teacher education is to identify the micro-processes of successful and unsuccessful class interactions that were associated with positive and neutral emotional climate. The structure of these interactions can inform the practice of other science educators who wish to produce positive emotional climates in their classes. The study also extends and explicates the construct of intensity of emotional climate.
Resumo:
Higher-order thinking has featured persistently in the reform agenda for science education. The intended curriculum in various countries sets out aspirational statements for the levels of higher-order thinking to be attained by students. This study reports the extent to which chemistry examinations from four Australian states align and facilitate the intended higher-order thinking skills stipulated in curriculum documents. Through content analysis, the curriculum goals were identified for each state and compared to the nature of question items in the corresponding examinations. Categories of higher-order thinking were adapted from the OECD’s PISA Science test to analyze question items. There was considerable variation in the extent to which the examinations from the states supported the curriculum intent of developing and assessing higher-order thinking. Generally, examinations that used a marks-based system tended to emphasize lower-order thinking, with a greater distribution of marks allocated for lower-order thinking questions. Examinations associated with a criterion-referenced examination tended to award greater credit for higher-order thinking questions. The level of complexity of chemistry was another factor that limited the extent to which examination questions supported higher-order thinking. Implications from these findings are drawn for the authorities responsible for designing curriculum and assessment procedures and for teachers.
Resumo:
Background and Purpose The β1-adrenoceptor has at least two binding sites, high and low affinity sites (β1H and β1L, respectively), which mediate cardiostimulation. While β1H-adrenoceptor can be blocked by all clinically used β-blockers, β1L-adrenoceptor is relatively resistant to blockade. Thus, chronic β1L-adrenoceptor activation may mediate persistent cardiostimulation, despite the concurrent blockade of β1H-adrenoceptors. Hence, it is important to determine the potential significance of β1L-adrenoceptors in vivo, particularly in pathological situations. Experimental Approach C57Bl/6 male mice were used. Chronic (4 or 8 weeks) β1L-adrenoceptor activation was achieved by treatment, via osmotic mini pumps, with (-)-CGP12177 (10 mg·kg−1·day−1). Cardiac function was assessed by echocardiography and micromanometry. Key Results (-)-CGP12177 treatment of healthy mice increased heart rate and left ventricular (LV) contractility. (-)-CGP12177 treatment of mice subjected to transverse aorta constriction (TAC), during weeks 4–8 or 4–12 after TAC, led to a positive inotropic effect and exacerbated fibrogenic signalling while cardiac hypertrophy tended to be more severe. (-)-CGP12177 treatment of mice with TAC also exacerbated the myocardial expression of hypertrophic, fibrogenic and inflammatory genes compared to untreated TAC mice. Washout of (-)-CGP12177 revealed a more pronounced cardiac dysfunction after 12 weeks of TAC. Conclusions and Implications β1L-adrenoceptor activation provides functional support to the heart, in both normal and pathological (pressure overload) situations. Sustained β1L-adrenoceptor activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure.
Resumo:
Background and purpose Phosphodiesterases PDE3 and/or PDE4 control ventricular effects of catecholamines in several species but their relative effects in failing human ventricle are unknown. We investigated whether the PDE3-selective inhibitor cilostamide (0.3-1μM) or PDE4 inhibitor rolipram (1-10μM) modified the positive inotropic and lusitropic effects of catecholamines in human failing myocardium. Experimental approach Right and left ventricular trabeculae from freshly explanted hearts of 5 non-β-blocker-treated and 15 metoprolol-treated patients with terminal heart failure were paced to contract at 1Hz. The effects of (-)-noradrenaline, mediated through β1-adrenoceptors (β2-adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through β2-adrenoceptors (β1-adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of PDE inhibitors. Catecholamine potencies were estimated from –logEC50s. Key results Cilostamide did not significantly potentiate the inotropic effects of the catecholamines in non-β-blocker-treated patients. Cilostamide caused greater potentiation (P=0.037) of the positive inotropic effects of (-)-adrenaline (0.78±0.12 log units) than (-)-noradrenaline (0.47±0.12 log units) in metoprolol-treated patients. Lusitropic effects of the catecholamines were also potentiated by cilostamide. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline on right and left ventricular trabeculae from metoprolol-treated patients. Conclusions and implications Metoprolol induces a control by PDE3 of ventricular effects mediated through both β1- and β2-adrenoceptors, thereby further reducing sympathetic cardiostimulation in patients with terminal heart failure. Concurrent therapy with a PDE3 blocker and metoprolol could conceivably facilitate cardiostimulation evoked by adrenaline through β2-adrenoceptors. PDE4 does not appear to reduce inotropic and lusitropic effects of catecholamines in failing human ventricle.
Resumo:
The metal lithium is very important in industry, including lithium batteries. An important source of lithium besides continental brines is granitic pegmatites as in Australia. Lithiophilite is a lithium and manganese phosphate with chemical formula LiMnPO4 and forms a solid solution with triphylite, its Fe analog, and belongs to the triphylite group that includes karenwebberite, natrophilite, and sicklerite. The mineral lithiophilite was characterized by chemical analysis and spectroscopic techniques. The chemical is: Li1.01(Mn0.60, Fe0.41, Mg0.01, Ca0.01)(PO4)0.99 and corresponds to an intermediate member of the triphylite-lithiophilite series, with predominance of the lithiophilite member. The mineral lithiophilite is readily characterized by Raman and infrared spectroscopy.
Resumo:
In recent years, interest in tissue engineering and its solutions has increased considerably. In particular, scaffolds have become fundamental tools in bone graft substitution and are used in combination with a variety of bio-agents. However, a long-standing problem in the use of these conventional scaffolds lies in the impossibility of re-loading the scaffold with the bio-agents after implantation. This work introduces the magnetic scaffold as a conceptually new solution. The magnetic scaffold is able, via magnetic driving, to attract and take up in vivo growth factors, stem cells or other bio-agents bound to magnetic particles. The authors succeeded in developing a simple and inexpensive technique able to transform standard commercial scaffolds made of hydroxyapatite and collagen in magnetic scaffolds. This innovative process involves dip-coating of the scaffolds in aqueous ferrofluids containing iron oxide nanoparticles coated with various biopolymers. After dip-coating, the nanoparticles are integrated into the structure of the scaffolds, providing the latter with magnetization values as high as 15 emu g�1 at 10 kOe. These values are suitable for generating magnetic gradients, enabling magnetic guiding in the vicinity and inside the scaffold. The magnetic scaffolds do not suffer from any structural damage during the process, maintaining their specific porosity and shape. Moreover, they do not release magnetic particles under a constant flow of simulated body fluids over a period of 8 days. Finally, preliminary studies indicate the ability of the magnetic scaffolds to support adhesion and proliferation of human bone marrow stem cells in vitro. Hence, this new type of scaffold is a valuable candidate for tissue engineering applications, featuring a novel magnetic guiding option.
Resumo:
Tissue Engineering is a promising emerging field that studies the intrinsic regenerative potential of the human body and uses it to restore functionality of damaged organs or tissues unable of self-healing due to illness or ageing. In order to achieve regeneration using Tissue Engineering strategies, it is first necessary to study the properties of the native tissue and determine the cause of tissue failure; second, to identify an optimum population of cells capable of restoring its functionality; and third, to design and manufacture a cellular microenvironment in which those specific cells are directed towards the desired cellular functions. The design of the artificial cellular niche has a tremendous importance, because cells will feel and respond to both its biochemical and biophysical properties very differently. In particular, the artificial niche will act as a physical scaffold for the cells, allowing their three-dimensional spatial organization; also, it will provide mechanical stability to the artificial construct; and finally, it will supply biochemical and mechanical cues to control cellular growth, migration, differentiation and synthesis of natural extracellular matrix. During the last decades, many scientists have made great contributions to the field of Tissue Engineering. Even though this research has frequently been accompanied by vast investments during extended periods of time, yet too often these efforts have not been enough to translate the advances into new clinical therapies. More and more scientists in this field are aware of the need of rational experimental designs before carrying out complex, expensive and time-consuming in vitro and in vivo trials. This review highlights the importance of computer modeling and novel biofabrication techniques as critical key players for a rational design of artificial cellular niches in Tissue Engineering.
Resumo:
Scaffolds play a pivotal role in tissue engineering, promoting the synthesis of neo extra-cellular matrix (ECM), and providing temporary mechanical support for the cells during tissue regeneration. Advances introduced by additive manufacturing techniques have significantly improved the ability to regulate scaffold architecture, enhancing the control over scaffold shape and porosity. Thus, considerable research efforts have been devoted to the fabrication of 3D porous scaffolds with optimized micro-architectural features. This chapter gives an overview of the methods for the design of additively manufactured scaffolds and their applicability in tissue engineering (TE). Along with a survey of the state of the art, the Authors will also present a recently developed method, called Load-Adaptive Scaffold Architecturing (LASA), which returns scaffold architectures optimized for given applied mechanical loads systems, once the specific stress distribution is evaluated through Finite Element Analysis (FEA).
Resumo:
The practice of medicine has always aimed at individualized treatment of disease. The relationship between patient and physician has always been a personal one, and the physician's choice of treatment has been intended to be the best fit for the patient's needs. The necessary pooling/grouping of disease families and their assignment to a number of drugs or treatment methods has, consequently, led to an increase in the number of effective therapies. However, given the heterogeneity of most human diseases, and cancer specifically, it is currently impossible for the treating clinician to effectively predict a patient's response and outcome based on current technologies, much less the idiosyncratic resistances and adverse effects associated with the limited therapeutic options.
Resumo:
Sociological approaches to inquiry on emotion in educational settings are growing. Despite a long tradition of research and theory in disciplines such as psychology and sociology, the methods and approaches for naturalistic investigation of emotion are in a developmental phase in educational settings. In this article, recent empirical studies on emotion in educational contexts are canvassed. The discussion focuses on the use of multiple methods within research conducted in high school and university classrooms highlighting recent methodological progress. The methods discussed include facial expression analysis, verbal and non-verbal conduct, and self-report methods. Analyses drawn from different studies, informed by perspectives from microsociology, highlight the strengths and limitations of any one method. The power and limitations of multi-method approaches is discussed.
Resumo:
The role of emotion during learning encounters in science teacher education is under-researched and under-theorized. In this case study we explore the emotional climates, that is, the collective states of emotional arousal, of a preservice secondary science education class to illuminate practice for producing and reproducing high quality learning experiences for preservice science teachers. Theories related to the sociology of emotions informed our analyses from data sources such as preservice teachers’ perceptions of the emotional climate of their class, emotional facial expressions, classroom conversations, and cogenerative dialogue. The major outcome from our analyses was that even though preservice teachers reported high positive emotional climate during the professor’s science demonstrations, they also valued the professor’s in the moment reflections on her teaching that were associated with low emotional climate ratings. We co-relate emotional climate data and preservice teachers’ comments during cogenerative dialogue to expand our understanding of high quality experiences and emotional climate in science teacher education. Our study also contributes refinements to research perspectives on emotional climate.
Resumo:
The one-step preparation of highly anisotropic polymer semiconductor thin films directly from solution is demonstrated. The conjugated polymer poly(3-hexylthiophene) (P3HT) as well as P3HT:fullerene bulk-heterojunction blends can be spin-coated from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene (TCB) and a second carrier solvent such as chlorobenzene. Solidification is initiated by growth of macroscopic TCB spherulites followed by epitaxial crystallization of P3HT on TCB crystals. Subsequent sublimation of TCB leaves behind a replica of the original TCB spherulites. Thus, highly ordered thin films are obtained, which feature square-centimeter-sized domains that are composed of one spherulite-like structure each. A combination of optical microscopy and polarized photoluminescence spectroscopy reveals radial alignment of the polymer backbone in case of P3HT, whereas P3HT:fullerene blends display a tangential orientation with respect to the center of spherulite-like structures. Moreover, grazing-incidence wide-angle X-ray scattering reveals an increased relative degree of crystallinity and predominantly flat-on conformation of P3HT crystallites in the blend. The use of other processing methods such as dip-coating is also feasible and offers uniaxial orientation of the macromolecule. Finally, the applicability of this method to a variety of other semi-crystalline conjugated polymer systems is established. Those include other poly(3-alkylthiophene)s, two polyfluorenes, the low band-gap polymer PCPDTBT, a diketopyrrolopyrrole (DPP) small molecule as well as a number of polymer:fullerene and polymer:polymer blends. Macroscopic spherulite-like structures of the conjugated polymer poly(3-hexylthiophene) (P3HT) grow directly during spin-coating. This is achieved by processing P3HT or P3HT:fullerene bulk heterojunction blends from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene and a second carrier solvent such as chlorobenzene. Epitaxial growth of the polymer on solidified solvent crystals gives rise to circular-symmetric, spherulite-like structures that feature a high degree of anisotropy.