872 resultados para Ag recovery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lignocellulosic biomasses (e.g., wood and straws) are a potential renewable source for the production of a wide variety of chemicals that could be used to replace those currently produced by petrochemical industry. This would lead to lower greenhouse gas emissions and waste amounts, and to economical savings. There are many possible pathways available for the manufacturing of chemicals from lignocellulosic biomasses. One option is to hydrolyze the cellulose and hemicelluloses of these biomasses into monosaccharides using concentrated sulfuric acid as catalyst. This process is an efficient method for producing monosaccharides which are valuable platforn chemicals. Also other valuable products are formed in the hydrolysis. Unfortunately, the concentrated acid hydrolysis has been deemed unfeasible mainly due to high chemical consumption resulting from the need to remove sulfuric acid from the obtained hydrolysates prior to the downstream processing of the monosaccharides. Traditionally, this has been done by neutralization with lime. This, however, results in high chemical consumption. In addition, the by-products formed in the hydrolysis are not removed and may, thus, hinder the monosaccharide processing. In order to improve the feasibility of the concentrated acid hydrolysis, the chemical consumption should be decreased by recycling of sulfuric acid without neutralization. Furthermore, the monosaccharides and the other products formed in the hydrolysis should be recovered selectively for efficient downstream processing. The selective recovery of the hydrolysis by-products would have additional economical benefits on the process due to their high value. In this work, the use of chromatographic fractionation for the recycling of sulfuric acid and the selective recovery of the main components from the hydrolysates formed in the concentrated acid hydrolysis was investigated. Chromatographic fractionation based on the electrolyte exclusion with gel type strong acid cation exchange resins in acid (H+) form as a stationary phase was studied. A systematic experimental and model-based study regarding the separation task at hand was conducted. The phenomena affecting the separation were determined and their effects elucidated. Mathematical models that take accurately into account these phenomena were derived and used in the simulation of the fractionation process. The main components of the concentrated acid hydrolysates (sulfuric acid, monosaccharides, and acetic acid) were included into this model. Performance of the fractionation process was investigated experimentally and by simulations. Use of different process options was also studied. Sulfuric acid was found to have a significant co-operative effect on the sorption of the other components. This brings about interesting and beneficial effects in the column operations. It is especially beneficial for the separation of sulfuric acid and the monosaccharides. Two different approaches for the modelling of the sorption equilibria were investigated in this work: a simple empirical approach and a thermodynamically consistent approach (the Adsorbed Solution theory). Accurate modelling of the phenomena observed in this work was found to be possible using the simple empirical models. The use of the Adsorbed Solution theory is complicated by the nature of the theory and the complexity of the studied system. In addition to the sorption models, a dynamic column model that takes into account the volume changes of the gel type resins as changing resin bed porosity was also derived. Using the chromatography, all the main components of the hydrolysates can be recovered selectively, and the sulfuric acid consumption of the hydrolysis process can be lowered considerably. Investigation of the performance of the chromatographic fractionation showed that the highest separation efficiency in this separation task is obtained with a gel type resin with a high crosslinking degree (8 wt. %); especially when the hydrolysates contain high amounts of acetic acid. In addition, the concentrated acid hydrolysis should be done with as low sulfuric acid concentration as possible to obtain good separation performance. The column loading and flow rate also have large effects on the performance. In this work, it was demonstrated that when recycling of the fractions obtained in the chromatographic fractionation are recycled to preceding unit operations these unit operations should included in the performance evaluation of the fractionation. When this was done, the separation performance and the feasibility of the concentrated acid hydrolysis process were found to improve considerably. Use of multi-column chromatographic fractionation processes, the Japan Organo process and the Multi-Column Recycling Chromatography process, was also investigated. In the studied case, neither of these processes could compete with the single-column batch process in the productivity. However, due to internal recycling steps, the Multi-Column Recycling Chromatography was found to be superior to the batch process when the product yield and the eluent consumption were taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilization of biomass-based raw materials for the production of chemicals and materials is gaining an increasing interest. Due to the complex nature of biomass, a major challenge in its refining is the development of efficient fractionation and purification processes. Preparative chromatography and membrane filtration are selective, energy-efficient separation techniques which offer a great potential for biorefinery applications. Both of these techniques have been widely studied. On the other hand, only few process concepts that combine the two methods have been presented in the literature. The aim of this thesis was to find the possible synergetic effects provided by combining chromatographic and membrane separations, with a particular interest in biorefinery separation processes. Such knowledge could be used in the development of new, more efficient separation processes for isolating valuable compounds from complex feed solutions that are typical for the biorefinery environment. Separation techniques can be combined in various ways, from simple sequential coupling arrangements to fully-integrated hybrid processes. In this work, different types of combined separation processes as well as conventional chromatographic separation processes were studied for separating small molecules such as sugars and acids from biomass hydrolysates and spent pulping liquors. The combination of chromatographic and membrane separation was found capable of recovering high-purity products from complex solutions. For example, hydroxy acids of black liquor were successfully recovered using a novel multistep process based on ultrafiltration and size-exclusion chromatography. Unlike any other separation process earlier suggested for this challenging separation task, the new process concept does not require acidification pretreatment, and thus it could be more readily integrated into a pulp-mill biorefinery. In addition to the combined separation processes, steady-state recycling chromatography, which has earlier been studied for small-scale separations of high-value compounds only, was found a promising process alternative for biorefinery applications. In comparison to conventional batch chromatography, recycling chromatography provided higher product purity, increased the production rate and reduced the chemical consumption in the separation of monosaccharides from biomass hydrolysates. In addition, a significant further improvement in the process performance was obtained when a membrane filtration unit was integrated with recycling chromatography. In the light of the results of this work, separation processes based on combining membrane and chromatographic separations could be effectively applied for different biorefinery applications. The main challenge remains in the development of inexpensive separation materials which are resistant towards harsh process conditions and fouling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tässä työssä esitellään kirjallisuudesta löytyneitä vaihtoehtoja jalometallien (Au, Ag, Pt, Pd, Is, Os, Rh, Ru, Re) homogeeniseen pelkistämiseen ja tekijöitä, jotka vaikuttavat pelkistimen valintaan. Jalometallien korkea hinta tekee niiden talteenoton pienistäkin pitoisuuksista kiinnostavaksi. Pelkistäminen on talteenoton viimeinen vaihe, jota voidaan käyttää myös puhdistusaskeleena. Pelkistimen valinnalla on suuri merkitys pelkistystulokseen. Myös pH:lla ja lämpötilalla on merkittävä vaikutus pelkistykseen. Ideaalinen pelkistyskemikaali on edullinen, selektiivinen, sillä on kohtuullinen pelkistysaika, se ei ole haitallinen, ei muodosta haitallisia sivutuotteita ja tarvittava prosessi on yksinkertainen. Lupaavia pelkistyskemikaaleja ovat esimerkiksi askorbiinihappo, vetyperoksidi ja muurahaishappo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modification of pyruvate kinase (PK) and lactate dehydrogenase (LDH) activity in foot muscle of the mussel Mytilus galloprovincialis during exposure to air and recovery in water was investigated. In the course of exposure to air, the activity of these enzymes measured at high and low substrate concentrations showed successive increases and decreases. Returning the mussels to water after exposure to air affected enzyme activity in a manner similar to anaerobiosis. When measuring at saturated concentrations of substrates and substrate and coenzyme for PK and LDH, respectively, the maximum activation of PK (37%) was observed at 4 h of animal exposure to air, and for LDH (67%) at 6 h exposure to air. During 24 h of exposure of animals to air, PK activity practically reached the stock level, while LDH was still activated (148%). The change in lactate dehydrogenase activity in mussel muscle during anoxia and recovery is described here for the first time. Variation in pyruvate kinase activity during exposure to air and recovery is linked to the alteration of half-maximal saturation constants and maximal velocity for both substrates. The possible role of reversible phosphorylation in the regulation of pyruvate kinase and lactate dehydrogenase properties is discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erythrocytes may play a role in glucose homeostasis during the postprandial period. Erythrocytes from diabetic patients are defective in glucose transport and metabolism, functions that may affect glycogen storage. Phenobarbital, a hepatic enzyme inducer, has been used in the treatment of patients with non-insulin-dependent diabetes mellitus (NIDDM), increasing the insulin-mediated glucose disposal. We studied the effects of phenobarbital treatment in vivo on glycemia and erythrocyte glycogen content in control and alloxan-diabetic rats during the postprandial period. In control rats (blood glucose, 73 to 111 mg/dl in femoral and suprahepatic veins) the erythrocyte glycogen content was 45.4 ± 1.1 and 39.1 ± 0.8 µg/g Hb (mean ± SEM, N = 4-6) in the femoral artery and vein, respectively, and 37.9 ± 1.1 in the portal vein and 47.5 ± 0.9 in the suprahepatic vein. Diabetic rats (blood glucose, 300-350 mg/dl) presented low (P<0.05) erythrocyte glycogen content, i.e., 9.6 ± 0.1 and 7.1 ± 0.7 µg/g Hb in the femoral artery and vein, respectively, and 10.0 ± 0.7 and 10.7 ± 0.5 in the portal and suprahepatic veins, respectively. After 10 days of treatment, phenobarbital (0.5 mg/ml in the drinking water) did not change blood glucose or erythrocyte glycogen content in control rats. In diabetic rats, however, it lowered (P<0.05) blood glucose in the femoral artery (from 305 ± 18 to 204 ± 45 mg/dl) and femoral vein (from 300 ± 11 to 174 ± 48 mg/dl) and suprahepatic vein (from 350 ± 10 to 174 ± 42 mg/dl), but the reduction was not sufficient for complete recovery. Phenobarbital also stimulated the glycogen synthesis, leading to a partial recovery of glycogen stores in erythrocytes. In treated rats, erythrocyte glycogen content increased to 20.7 ± 3.8 µg/g Hb in the femoral artery and 30.9 ± 0.9 µg/g Hb in the suprahepatic vein (P<0.05). These data indicate that phenobarbital activated some of the insulin-stimulated glucose metabolism steps which were depressed in diabetic erythrocytes, supporting the view that erythrocytes participate in glucose homeostasis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the effect of halothane as a cardioplegic agent, ten Wistar rats were anesthetized by ether inhalation and their hearts were perfused in a Langendorff system with Krebs-Henseleit solution (36oC; 90 cm H2O pressure). After a 15-min period for stabilization the control values for heart rate, force (T), dT/dt and coronary flow were recorded and a halothane-enriched solution (same temperature and pressure) was perfused until cardiac arrest was obtained. The same Krebs-Henseleit solution was reperfused again and the parameters studied were recorded after 1, 3, 5, 10, 20 and 30 min. Cardiac arrest occurred in all hearts during the first two min of perfusion with halothane-bubbled solution. One minute after reperfusion without halothane, the following parameters reported in terms of control values were obtained: 90.5% of control heart rate (266.9 ± 43.4 to 231.5 ± 71.0 bpm), 20.2% of the force (1.83 ± 0.28 to 0.37 ± 0.25 g), 19.8% of dT/dt (46.0 ± 7.0 to 9.3 ± 6.0 g/s) and 90.8% of coronary flow (9.9 ± 1.5 to 9.4 ± 1.5 ml/min). After 3 min of perfusion they changed to 99.0% heart rate (261.0 ± 48.2), 98.9% force (1.81 ± 0.33), 98.6 dT/dt (45.0 ± 8.2) and 94.8% coronary flow (9.3 ± 1.4). At 5 min 100.8% (267.0 ± 40.6) heart rate, 105.0% (1.92 ± 0.29) force and 104.4% (48.2 ± 7.2) dT/dt were recorded and maintained without significant differences (P>0.01) until the end of the experiment. These data demonstrate that volatile cardioplegia with halothane is an effective technique for fast induction of and prompt recovery from normothermic cardiac arrest of the rat heart

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence has indicated that the sarcoplasmic reticulum (SR) might be involved in the generation of spontaneous electrical activity in atrial pacemaker cells. We report the effect of disabling the SR with ryanodine (0.1 µM) on the sinus node recovery time (SNRT) measured in isolated right atria from 4-6-month-old male Wistar rats. Electrogram and isometric force were recorded at 36.5oC. Two methods for sinus node resetting were used: a) pulse: a single stimulus pulse interpolated at coupling intervals of 50, 65 or 80% of the regular spontaneous cycle length (RCL), and b) train: a 2-min train of pulses at intervals of 50, 65 or 80% of RCL. Corrected SNRT (cSNRT) was calculated as the difference between SNRT (first spontaneous cycle length after stimulation interruption) and RCL. Ryanodine only slightly increased RCL (<10%), but decreased developed force by 90%. When the pulse method was used, cSNRT (~40 ms), which represents intranodal/atrial conduction time, was independent of the coupling interval and unaffected by ryanodine. However, cSNRT obtained by the train method was significantly higher for shorter intervals between pulses, indicating the occurrence of overdrive suppression. In this case, ryanodine prolonged cSNRT in a rate-dependent fashion, with a greater effect at shorter intervals. These results indicate that: a) a functional SR, albeit important for force development, does not seem to play a major role in atrial automaticity in the rat; b) disruption of cell Ca2+ homeostasis by inhibition of SR function does not appear to affect conduction; however, it enhances overdrive-induced depression of sinusal automaticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical exercise is associated with parasympathetic withdrawal and increased sympathetic activity resulting in heart rate increase. The rate of post-exercise cardiodeceleration is used as an index of cardiac vagal reactivation. Analysis of heart rate variability (HRV) and complexity can provide useful information about autonomic control of the cardiovascular system. The aim of the present study was to ascertain the association between heart rate decrease after exercise and HRV parameters. Heart rate was monitored in 17 healthy male subjects (mean age: 20 years) during the pre-exercise phase (25 min supine, 5 min standing), during exercise (8 min of the step test with an ascending frequency corresponding to 70% of individual maximal power output) and during the recovery phase (30 min supine). HRV analysis in the time and frequency domains and evaluation of a newly developed complexity measure - sample entropy - were performed on selected segments of heart rate time series. During recovery, heart rate decreased gradually but did not attain pre-exercise values within 30 min after exercise. On the other hand, HRV gradually increased, but did not regain rest values during the study period. Heart rate complexity was slightly reduced after exercise and attained rest values after 30-min recovery. The rate of cardiodeceleration did not correlate with pre-exercise HRV parameters, but positively correlated with HRV measures and sample entropy obtained from the early phases of recovery. In conclusion, the cardiodeceleration rate is independent of HRV measures during the rest period but it is related to early post-exercise recovery HRV measures, confirming a parasympathetic contribution to this phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abnormal riboflavin status in the absence of a dietary deficiency was detected in 31 consecutive outpatients with Parkinson's disease (PD), while the classical determinants of homocysteine levels (B6, folic acid, and B12) were usually within normal limits. In contrast, only 3 of 10 consecutive outpatients with dementia without previous stroke had abnormal riboflavin status. The data for 12 patients who did not complete 6 months of therapy or did not comply with the proposed treatment paradigm were excluded from analysis. Nineteen PD patients (8 males and 11 females, mean age ± SD = 66.2 ± 8.6 years; 3, 3, 2, 5, and 6 patients in Hoehn and Yahr stages I to V) received riboflavin orally (30 mg every 8 h) plus their usual symptomatic medications and all red meat was eliminated from their diet. After 1 month the riboflavin status of the patients was normalized from 106.4 ± 34.9 to 179.2 ± 23 ng/ml (N = 9). Motor capacity was measured by a modification of the scoring system of Hoehn and Yahr, which reports motor capacity as percent. All 19 patients who completed 6 months of treatment showed improved motor capacity during the first three months and most reached a plateau while 5/19 continued to improve in the 3- to 6-month interval. Their average motor capacity increased from 44 to 71% after 6 months, increasing significantly every month compared with their own pretreatment status (P < 0.001, Wilcoxon signed rank test). Discontinuation of riboflavin for several days did not impair motor capacity and yellowish urine was the only side effect observed. The data show that the proposed treatment improves the clinical condition of PD patients. Riboflavin-sensitive mechanisms involved in PD may include glutathione depletion, cumulative mitochondrial DNA mutations, disturbed mitochondrial protein complexes, and abnormal iron metabolism. More studies are required to identify the mechanisms involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reverse osmosis and nanofiltration are among the most effective and widely used desalination and water softening technologies. They can also be used to treat mining wastewaters and are capable of producing water of extremely high purity, regardless of the high concentrations of toxic heavy metals and extreme pH and salinity. However, challenges with recovering the salts and metals from mining wastewaters in exploitable form, as well as problems with scaling still limit the process efficiency and the ratio of purified water recoverable from process waters. To address the problem of membrane scaling caused by calcium sulfate, batch filtration experiments with the Desal-5 DL nanofiltration membrane, three commercial antiscalants and actual mine process water from a copper mine were performed. The aim of these experiments was to find process conditions where maximum water recovery would be achieved before significant scaling or irreversible membrane fouling would occur and to further improve water recovery by addition of antiscalants. Water recovery of 70 % was reached with the experimental setups by optimizing process conditions. PC-504T antiscaling agent was determined to be the most effective of the three antiscalants used and the addition of 5 ppm of PC-504T allowed the water recovery to be further increased from 70 % to 85 % before major scaling was observed. In these conditions 92 % calcium rejection was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclosporin-A (CsA) is an immunosuppressive drug that acts as an inhibitor of calcineurin, a calcium phosphatase that has been suggested to play a role in skeletal muscle hypertrophy. The aim of the present study was to determine the effect of CsA administration (25 mg kg-1 day-1) on skeletal muscle mass and phenotype during disuse and recovery. Male Wistar rats received vehicle (N = 8) or CsA (N = 8) during hind limb immobilization (N = 8) and recovery (N = 8). Muscle weight (dry/wet) and cross-sectional area were evaluated to verify the effect of CsA treatment on muscle mass. Muscle phenotype was assessed by histochemistry of myosin ATPase. CsA administration during immobilization and recovery did not change muscle/body weight ratio in the soleus (SOL) or plantaris (PL). Regarding muscle phenotype, we observed a consistent slow-to-fast shift in all experimental groups (immobilized only, receiving CsA only, and immobilized receiving CsA) as compared to control in both SOL and PL (P < 0.05). During recovery, no difference was observed in SOL or PL fiber type composition between the experimental recovered group and recovered group receiving CsA compared to their respective controls. Considering the muscle/body weight ratio, CsA administration does not maximize muscle mass loss induced by immobilization. Our results also indicate that CsA fails to block skeletal muscle regrowth after disuse. The present data suggest that calcineurin inhibition by CsA modulates muscle phenotype rather than muscle mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of recovered paper as raw material in the paper and board industry has increased heavily during recent decades. At the same time, growing environmental awareness has raised the interest in recycling and a more sustainable way of living, at least in high-income countries. This paper combines these topics and explores how economic, demographic and environmental factors have affected the recovery and utilization of recycled paper between 1992 and 2010 in a sample of 70 countries. This study updates and extends the previous research on the topic using panel data and panel data estimation methods. The results confirm the roles of economic determinants but also indicate that concern for the environment impacts the recovery of recycled paper particularly in high-income countries. Moreover, the motives for recycling appear to depend on the income level of a country, which is something that future policies should consider.