958 resultados para Advantage


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado apresentada ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Marketing Digital, sob orientação do Mestre Paulo Gonçalves e da Doutora Madalena Vilas Boas Esta versão não contém as críticas e sugestões dos elementos do júri

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ontologies have proliferated in the last years, essentially justified by the need of achieving a consensus in the multiple representations of reality inside computers, and therefore the accomplishment of interoperability between machines and systems. Ontologies provide an explicit conceptualization that describes the semantics of the data. Crowdsourcing innovation intermediaries are organizations that mediate the communication and relationship between companies that aspire to solve some problem or to take advantage of any business opportunity with a crowd that is prone to give ideas based on their knowledge, experience and wisdom, taking advantage of web 2.0 tools. Various ontologies have emerged, but at the best of our knowledge, there isn’t any ontology that represents the entire process of intermediation of crowdsourcing innovation. In this paper we present an ontology roadmap for developing crowdsourcing innovation ontology of the intermediation process. Over the years, several authors have proposed some distinct methodologies, by different proposals of combining practices, activities, languages, according to the project they were involved in. We start making a literature review on ontology building, and analyse and compare ontologies that propose the development from scratch with the ones that propose reusing other ontologies. We also review enterprise and innovation ontologies known in literature. Finally, are presented the criteria for selecting the methodology and the roadmap for building crowdsourcing innovation intermediary ontology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parallel hyperspectral unmixing problem is considered in this paper. A semisupervised approach is developed under the linear mixture model, where the abundance's physical constraints are taken into account. The proposed approach relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. Since Libraries are potentially very large and hyperspectral datasets are of high dimensionality a parallel implementation in a pixel-by-pixel fashion is derived to properly exploits the graphics processing units (GPU) architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for real hyperspectral datasets reveal significant speedup factors, up to 164 times, with regards to optimized serial implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a new parallel method for sparse spectral unmixing of remotely sensed hyperspectral data on commodity graphics processing units (GPUs) is presented. A semi-supervised approach is adopted, which relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. This method is based on the spectral unmixing by splitting and augmented Lagrangian (SUNSAL) that estimates the material's abundance fractions. The parallel method is performed in a pixel-by-pixel fashion and its implementation properly exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for simulated and real hyperspectral datasets reveal significant speedup factors, up to 1 64 times, with regards to optimized serial implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Publicidade e Marketing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Civil – Ramo Construções

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A otimização nos sistemas de suporte à decisão atuais assume um carácter fortemente interdisciplinar relacionando-se com a necessidade de integração de diferentes técnicas e paradigmas na resolução de problemas reais complexos, sendo que a computação de soluções ótimas em muitos destes problemas é intratável. Os métodos de pesquisa heurística são conhecidos por permitir obter bons resultados num intervalo temporal aceitável. Muitas vezes, necessitam que a parametrização seja ajustada de forma a permitir obter bons resultados. Neste sentido, as estratégias de aprendizagem podem incrementar o desempenho de um sistema, dotando-o com a capacidade de aprendizagem, por exemplo, qual a técnica de otimização mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização mais adequada de um dado algoritmo num determinado cenário. Alguns dos métodos de otimização mais usados para a resolução de problemas do mundo real resultaram da adaptação de ideias de várias áreas de investigação, principalmente com inspiração na natureza - Meta-heurísticas. O processo de seleção de uma Meta-heurística para a resolução de um dado problema é em si um problema de otimização. As Híper-heurísticas surgem neste contexto como metodologias eficientes para selecionar ou gerar heurísticas (ou Meta-heurísticas) na resolução de problemas de otimização NP-difícil. Nesta dissertação pretende-se dar uma contribuição para o problema de seleção de Metaheurísticas respetiva parametrização. Neste sentido é descrita a especificação de uma Híperheurística para a seleção de técnicas baseadas na natureza, na resolução do problema de escalonamento de tarefas em sistemas de fabrico, com base em experiência anterior. O módulo de Híper-heurística desenvolvido utiliza um algoritmo de aprendizagem por reforço (QLearning), que permite dotar o sistema da capacidade de seleção automática da Metaheurística a usar no processo de otimização, assim como a respetiva parametrização. Finalmente, procede-se à realização de testes computacionais para avaliar a influência da Híper- Heurística no desempenho do sistema de escalonamento AutoDynAgents. Como conclusão genérica, é possível afirmar que, dos resultados obtidos é possível concluir existir vantagem significativa no desempenho do sistema quando introduzida a Híper-heurística baseada em QLearning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los profesores de la licenciatura en Ciencias e Tecnologías da Documentaçáo e Informaçáo (CTDI) se preparan para sacar partido de las herramientas Web 2.0 como un complemento de su actividad lectiva. En este contexto, se presenta el Grupo de Investigación PlGeCo que pretende, por un lado, implementar la utilización de herramientas Web 2.0 de tal forma que se pueda conseguir ciertas premisas que actualmente orientan la nueva generación web (colaboración, contribución, comunidad), aplicando-las á la actividad lectiva e, por otro lado, el estímulo de la producción científica de los profesores y académica de los alumnos, así como su posterior análisis. Se ha hecho una valoración de los proyectos en curso y se discuten las expectativas esperadas presentado un análisis de las perspectivas y ambiciones futuras del grupo

Relevância:

10.00% 10.00%

Publicador:

Resumo:

i Gestão de Operações de um armazém Patrícia Raquel Freitas Gomes Relatório de estágio apresentado ao Instituto Superior de Contabilidade e Administração do Porto para obtenção de Grau de Mestre em Logística Orientado por: Prof. Doutora Maria Teresa Ribeiro Pereira Coorientado por: Eng.º César Emanuel Marinho Carvalho Teixeira

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Dot enzyme-linked immunosorbent assay (Dot-ELISA) was standardized and evaluated for the serodiagnosis of human toxoplasmosis. Out of 538 serum samples tested by the immunofluorescence test for toxoplasmosis (IFAT-IgG) as reference test, 183 (34%) were positive at cut off 1:16 and 192 (36%) were positive for Dot-ELISA-IgG at cut-off 1:256. For Dot-ELISA, co-positivity was 0.94, co-negativity 0.94 and concordance 0.88 in relation to IFAT-IgG. These results suggest the usefulness of Dot-ELISA (cut-off titer of 1:256) for the serodiagnosis of human toxoplasmosis. The main advantage of this technique is simplicity, positive test can be visually identified (colored precipitate). It does not require a special equipment and it can be used as a qualitative test to screen large numbers of samples or as a quantitative assay to determine end-point titration of individual sera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do Grau de Doutor em Conservação e Restauro, especialidade Ciências da Conservação, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada ao Instituto Superior de Contabilidade e Administração do Porto para obtenção do Grau de Mestre em Empreendedorismo e Internacionalização Orientadora: Professora Doutora Celsa Maria de Carvalho Machado

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A interação humano-computador passou a desempenhar um papel fundamental no mundo atual. Esta forma de comunicar continua a evoluir, introduzindo novas formas de interação, como por exemplo, a interação natural. Este estilo de interação começou por estar presente na área de jogos. No entanto, atualmente está a ser explorada noutras áreas. Esta dissertação tem como propósito investigar a utilidade das interfaces naturais encontradas em consolas de jogos e conjugar com a área educativa, nomeadamente, o ensino e a aprendizagem dos fundamentos de Matemática. O desenvolvimento deste projeto baseou-se no estudo dos conteúdos programáticos de Matemática referentes ao 1º ciclo do ensino básico, de várias aplicações já existentes que estão relacionadas com o tema abordado e de alguns dispositivos de interação natural. De forma a avaliar a ideia proposta, foi desenvolvido um protótipo, designado Matemática Interativa, no sentido de permitir ao utilizador enriquecer a aprendizagem e também o interesse pela disciplina. São descritas, de uma forma mais aprofundada, as funcionalidades do dispositivo escolhido, o Kinect, de modo a tirar proveito das suas potencialidades e desenvolver um motor de reconhecimento de gestos e respetiva avaliação. Por fim, é feita uma discussão dos resultados de uma avaliação de usabilidade com o objetivo de validar a aplicação Matemática Interativa. Os resultados desta avaliação sugerem que a aplicação foi bem-sucedida e revelam ainda capacidades de melhoria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A antropologia forense é uma disciplina das ciências forenses que trata da análise de restos cadavéricos humanos para fins legais. Uma das suas aplicações mais populares é a identificação forense que consiste em determinar o perfil biológico (idade, sexo, ancestralidade e estatura) de um indivíduo. No entanto, este processo muitas vezes é dificultado quando o corpo se encontra em avançado estado de decomposição apenas existindo restos esqueléticos. Neste caso, áreas médicas comummente utilizadas na identificação de cadáveres, como a patologia, tem de ser descartadas e surge a necessidade de aplicar outras técnicas. Neste contexto, muitos métodos antropométricos são propostos de forma a caracterizar uma pessoa através do seu esqueleto. Contudo, constata-se que a maioria dos procedimentos sugeridos é baseada em equipamentos básicos de medição, não usufruindo da tecnologia contemporânea. Assim, em parceria com a Delegação Norte do NMLCF, I. P., esta Tese teve na sua génese a criação de um sistema computacional baseado em imagens de Tomografia Computorizada (TC) de ossadas que, através de ferramentas open source, permita a realização de identificação forense. O trabalho apresentado baseia-se no processo de gestão de informação, aquisição, processamento e visualização de imagens TC. No decorrer da realização da presente Tese foi desenvolvida uma base de dados que permite organizar a informação de cada ossada e foram implementados algoritmos que levam a uma extracção de características muito mais vasta que a efetuada manualmente com os equipamentos de medição clássicos. O resultado final deste estudo consistiu num conjunto de técnicas que poderão ser englobadas num sistema computacional de identificação forense e deste modo criar uma aplicação com vantagens tecnológicas evidentes.