916 resultados para Adoptive T-cell Therapy
Resumo:
Serotonin reuptake inhibitors and cognitive-behavior therapy (CBT) are considered first-line treatments for obsessive-compulsive disorder (OCD). However, little is known about their modulatory effects on regional brain morphology in OCD patients. We sought to document structural brain abnormalities in treatment-naive OCD patients and to determine the effects of pharmacological and cognitive-behavioral treatments on regional brain volumes. Treatment-naive patients with OCD (n = 38) underwent structural magnetic resonance imaging scan before and after a 12-week randomized clinical trial with either fluoxetine or group CBT. Matched-healthy controls (n = 36) were also scanned at baseline. Voxel-based morphometry was used to compare regional gray matter (GM) volumes of regions of interest (ROIs) placed in the orbitofrontal, anterior cingulate and temporolimbic cortices, striatum, and thalamus. Treatment-naive OCD patients presented smaller GM volume in the left putamen, bilateral medial orbitofrontal, and left anterior cingulate cortices than did controls (p<0.05, corrected for multiple comparisons). After treatment with either fluoxetine or CBT (n = 26), GM volume abnormalities in the left putamen were no longer detectable relative to controls. ROI-based within-group comparisons revealed that GM volume in the left putamen significantly increased (p<0.012) in fluoxetine-treated patients (n = 13), whereas no significant GM volume changes were observed in CBT-treated patients (n = 13). This study supports the involvement of orbitofronto/cingulo-striatal loops in the pathophysiology of OCD and suggests that fluoxetine and CBT may have distinct neurobiological mechanisms of action. Neuropsychopharmacology (2012) 37, 734-745; doi: 10.1038/npp.2011.250; published online 26 October 2011
Resumo:
A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment.
Resumo:
Induction of apoptotic cell death in response to chemotherapy and other external stimuli has proved extremely difficult in melanoma, leading to tumor progression, metastasis formation and resistance to therapy. A promising approach for cancer chemotherapy is the inhibition of proteasomal activity, as the half-life of the majority of cellular proteins is under proteasomal control and inhibitors have been shown to induce cell death programs in a wide variety of tumor cell types. 4-Nerolidylcatechol (4-NC) is a potent antioxidant whose cytotoxic potential has already been demonstrated in melanoma tumor cell lines. Furthermore, 4-NC was able to induce the accumulation of ubiquitinated proteins, including classic targets of this process such as Mcl-1. As shown for other proteasomal inhibitors in melanoma, the cytotoxic action of 4-NC is time-dependent upon the pro-apoptotic protein Noxa, which is able to bind and neutralize Mcl-1. We demonstrate the role of 4-NC as a potent inducer of ROS and p53. The use of an artificial skin model containing melanoma also provided evidence that 4-NC prevented melanoma proliferation in a 3D model that more closely resembles normal human skin.
Resumo:
Central giant cell lesions are benign intraosseous proliferative lesions that have considerable local aggressiveness. Nonsurgical treatment methods, such as intralesional corticosteroid injections, systemic calcitonin and interferon have been reported. Recently, bisphosphonates have been used to treat central giant cell lesions. A case of a 36-year-old male with a central giant cell lesion crossing the mandibular midline was treated with intralesional corticosteroids combined with alendronate sodium for the control of systemic bone resorption. The steroid injections and the use of bisphosphonates were stopped after seven months when further needle penetration into the lesion was not possible due to new bone formation. After two years, the bony architecture was near normal, and only minimal radiolucency was present around the root apices of the involved teeth. The patient was followed up for four years, and panoramic radiography showed areas of new bone formation. Thus far, neither recurrence nor side effects of the medication have been detected.
Mimosine and Cyclophosphamide: a Potential New Combination Therapy Used to Prevent Tumor Development
Resumo:
The effects of mimosine (MI), which is an amino acid that is derived from Leucaena leucocephala, were evaluated on the growth of ascitic Ehrlich tumors, and the effects of the combination treatment of MI and cyclophosphamide (CY) on tumor growth were also assessed. Mice were divided into groups that received the following treatments over the course of 20 days: phosphate buffer solution (CO), MI, Ehrlich cells (E), E plus CY (EC), E plus MI (EM) and E plus MI and CY (EMC). No signs of toxicity were detected in the mice from the MI group. The mice from the EMC group showed reductions in body weights when compared with those from the E group. The animals from the EC, EM and EMC groups showed reductions in ascitic volume compared with those from the E group. The mice from the EMC group showed reductions in total cell numbers of ascitic fluid compared with those from the E, EC and EM groups. The combination of MI and CY was the most effective treatment for Ehrlich tumor ascites.
Resumo:
The aims of this study were to evaluate the effects of PhotogemA (R)-mediated photosensitization on rat palatal mucosa and the biodistribution of the photosensitizer in this tissue. A solution of PhotogemA (R) (500 or 1000 mg/l) was applied to the palatal mucosa for 30 min and the exposure time to blue LED (460 nm) was 20 min (144 J/cm(2)). At 0, 1, 3, and 7 days, palatal mucosa was photographed for macroscopic analysis. After killing, the palate was removed for microscopic analysis. Thermal mapping evaluated temperature change in the tissue during irradiation. All experimental groups revealed intact mucosa in the macroscopic analysis. Tissue alterations were observed microscopically for only four out of 80 animals subjected to PDT. Fluorescence emitted by PhotogemA (R) was identified and was limited to the epithelial layer. A temperature increase from 35 to 41A degrees C was recorded. PhotogemA (R)- mediated PDT was not toxic to the rat palatal mucosa.
Resumo:
Melanoma cells express the platelet-activating factor receptor (PAFR) and, thus, respond to PAF, a bioactive lipid produced by both tumour cells and those in the tumour microenvironment such as macrophages. Here, we show that treatment of a human melanoma SKmel37 cell line with cisplatin led to increased expression of PAFR and its accumulation. In the presence of exogenous PAF, melanoma cells were significantly more resistant to cisplatin-induced cell death. Inhibition of PAFR-dependent signalling pathways by a PAFR antagonist (WEB2086) showed chemosensitisation of melanoma cells in vitro. Nude mice were inoculated with SKmel37 cells and treated with cisplatin and WEB2086. Animals treated with both agents showed significantly decreased tumour growth compared to the control group and groups treated with only one agent. PAFR accumulation and signalling are part of a prosurvival program of melanoma cells, therefore constituting a promising target for combination therapy for melanomas.
Resumo:
Purpose: Oral mucositis is a major complication of concurrent chemoradiotherapy (CRT) in head-and-neck cancer patients. Low-level laser (LLL) therapy is a promising preventive therapy. We aimed to evaluate the efficacy of LLL therapy to decrease severe oral mucositis and its effect on RT interruptions. Methods and Materials: In the present randomized, double-blind, Phase III study, patients received either gallium-aluminum-arsenide LLL therapy 2.5 J/cm(2) or placebo laser, before each radiation fraction. Eligible patients had to have been diagnosed with squamous cell carcinoma or undifferentiated carcinoma of the oral cavity, pharynx, larynx, or metastases to the neck with an unknown primary site. They were treated with adjuvant or definitive CRT, consisting of conventional RT 60-70 Gy (range, 1.8-2.0 Gy/d, 5 times/wk) and concurrent cisplatin. The primary endpoints were the oral mucositis severity in Weeks 2, 4, and 6 and the number of RT interruptions because of mucositis. The secondary endpoints included patient-reported pain scores. To detect a decrease in the incidence of Grade 3 or 4 oral mucositis from 80% to 50%, we planned to enroll 74 patients. Results: A total of 75 patients were included, and 37 patients received preventive LLL therapy. The mean delivered radiation dose was greater in the patients treated with LLL (69.4 vs. 67.9 Gy, p = .03). During CRT, the number of patients diagnosed with Grade 3 or 4 oral mucositis treated with LLL vs. placebo was 4 vs. 5 (Week 2, p = 1.0), 4 vs. 12 (Week 4, p = .08), and 8 vs. 9 (Week 6, p = 1.0), respectively. More of the patients treated with placebo had RT interruptions because of mucositis (6 vs. 0, p = .02). No difference was detected between the treatment arms in the incidence of severe pain. Conclusions: LLL therapy was not effective in reducing severe oral mucositis, although a marginal benefit could not be excluded. It reduced RT interruptions in these head-and-neck cancer patients, which might translate into improved CRT efficacy. (C) 2012 Elsevier Inc.
Resumo:
Information on B-10 distribution in normal tissues is crucial to any further development of boron neutron capture therapy (BNCT). The goal of this study was to investigate the in vitro and in vivo boron biodistribution in B16F10 murine melanoma and normal tissues as a model for human melanoma treatment by a simple and rapid colorimetric method, which was validated by HR-ICP-MS. The B16F10 melanoma cell line showed higher melanin content than human melanocytes, demonstrating a greater potential for boronophenylalanine uptake. The melanocytes showed a moderate viability decrease in the first few minutes after BNCT application, stabilizing after 75 min, whereas the B16F10 melanoma showed the greatest intracellular boron concentration at 150 min after application, indicating a different boron uptake of melanoma cells compared to normal melanocytes. Moreover, at this time, the increase in boron uptake in melanoma cells was approximately 1.6 times higher than that in normal melanocytes. The B-10 concentration in the blood of mice bearing B16F10 melanoma increased until 90 min after BNCT application and then decreased after 120 min, and remained low until the 240th minute. On the other hand, the B-10 concentration in tumors was increased from 90 min and maximal at 150 min after application, thus confirming the in vitro results. Therefore, the present in vitro and in vivo study of B-10 uptake in normal and tumor cells revealed important data that could enable BNCT to be possibly used as a treatment for melanoma, a chemoresistant cancer associated with high mortality.
Resumo:
Irnmunohistochcmical expression of BAX was evaluated in 24 canine cutaneous mast cell tumours in order to verify the relationship of this expression to the histopathological grade of the lesions and its prognostic value for clinical outcome. BAX expression increased with higher histopathological grades (P = 0.0148; P < 0.05 between grades I and III). Animals with high levels of BAX expression were 4.25 times more likely to die from the disease and had shorter post-surgical survival times (P = 0.0009). These results suggest that alterations in BAX expression may be related to the aggressiveness of canine cutaneous mast cell tumours, indicating that immunohistochemical detection of BAX may be predictive of clinical outcome. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Adipose tissue-derived stem cells (ASCs) are an attractive source of stem cells with regenerative properties that are similar to those of bone marrow stem cells. Here, we analyze the role of ASCs in reducing the progression of kidney fibrosis. Progressive renal fibrosis was achieved by unilateral clamping of the renal pedicle in mice for 1 h; after that, the kidney was reperfused immediately. Four hours after the surgery, 2 x 10(5) ASCs were intraperitoneally administered, and mice were followed for 24 h posttreatment and then at some other time interval for the next 6 weeks. Also, animals were treated with 2 x 10(5) ASCs at 6 weeks after reperfusion and sacrificed 4 weeks later to study their effect when interstitial fibrosis is already present. At 24 h after reperfusion, ASC-treated animals showed reduced renal dysfunction and enhanced regenerative tubular processes. Renal mRNA expression of IL-6 and TNF was decreased in ASC-treated animals, whereas IL-4. IL-10, and HO-1 expression increased despite a lack of ASCs in the kidneys as determined by SRY analysis. As expected, untreated kidneys shrank at 6 weeks, whereas the kidneys of ASC-treated animals remained normal in size, showed less collagen deposition, and decreased staining for FSP-1, type I collagen, and Hypoxyprobe. The renal protection seen in ASC-treated animals was followed by reduced serum levels of TNF-alpha, KC, RANTES, and IL-1 alpha. Surprisingly, treatment with ASCs at 6 weeks, when animals already showed installed fibrosis, demonstrated amelioration of functional parameters, with less tissue fibrosis observed and reduced mRNA expression of type I collagen and vimentin. ASC therapy can improve functional parameters and reduce progression of renal fibrosis at early and later times after injury, mostly due to early modulation of the inflammatory response and to less hypoxia, thereby reducing the epithelial-mesenchymal transition.
Resumo:
Our goal was to demonstrate the in vivo tumor specific accumulation of crotamine, a natural peptide from the venom of the South American rattlesnake Crotalus durissus terrificus, which has been characterized by our group as a cell penetrating peptide with a high specificity for actively proliferating cells and with a concentration-dependent cytotoxic effect. Crotamine cytotoxicity has been shown to be dependent on the disruption of lysosomes and subsequent activation of intracellular proteases. In this work, we show that the cytotoxic effect of crotamine also involves rapid intracellular calcium release and loss of mitochondrial membrane potential as observed in real time by confocal microscopy. The intracellular calcium overload induced by crotamine was almost completely blocked by thapsigargin. Microfluorimetry assays confirmed the importance of internal organelles, such as lysosomes and the endoplasmic reticulum, as contributors for the intracellular calcium increase, as well as the extracellular medium. Finally, we demonstrate here that crotamine injected intraperitoneally can efficiently target remote subcutaneous tumors engrafted in nude mice, as demonstrated by a noninvasive optical imaging procedure that permits in vivo real-time monitoring of crotamine uptake into tumor tissue. Taken together, our data indicate that the cytotoxic peptide crotamine can be used potentially for a dual purpose: to target and detect growing tumor tissues and to selectively trigger tumor cell death.
Resumo:
Background The field cancerization concept in photodamaged patients suggests that the entire sun-exposed surface of the skin has an increased risk for the development of (pre)-malignant lesions, mainly epithelial tumours. Topical photodynamic therapy (PDT) is a noninvasive therapeutic method for multiple actinic keratosis (AK) with excellent outcome. Objectives To evaluate the clinical, histological and immunohistochemical changes in human skin with field cancerization after multiple sessions of PDT with methyl-aminolaevulinate (MAL). Methods Twenty-six patients with photodamaged skin and multiple AK on the face received three consecutive sessions of MAL-PDT with red light (37 J cm(-2)), 1 month apart. Biopsies before and 3 months after the last treatment session were taken from normal-appearing skin on the field-cancerized area. Immunohistochemical stainings were performed for TP-53, procollagen-I, metalloproteinase-1 (MMP-1) and tenascin-C (Tn-C). Results All 26 patients completed the study. The global score for photodamage improved considerably in all patients (P < 0.001). The AK clearance rate was 89.5% at the end of the study. Two treatment sessions were as effective as three MAL-PDT sessions. A significant decrease in atypia grade and extent of keratinocyte atypia was observed histologically (P < 0.001). Also, a significant increase in collagen deposition (P = 0.001) and improvement of solar elastosis (P = 0.002) were noticed after PDT. However, immunohistochemistry showed only a trend for decreased TP-53 expression (not significant), increased procollagen-I and MMP-1 expressions (not significant) and an increased expression of Tn-C (P = 0.024). Conclusions Clinical and histological improvement in field cancerization after multiple sessions of MAL-PDT is proven. The decrease in severity and extent of keratinocyte atypia associated with a decreased expression of TP-53 suggest a reduced carcinogenic potential of the sun-damaged area. The significant increase of new collagen deposition and the reduction of solar elastosis explain the clinical improvement of photodamaged skin.
Resumo:
Arthritis of the knee is the most common type of joint inflammatory disorder and it is associated with pain and inflammation of the joint capsule. Few studies address the effects of the 810-nm laser in such conditions. Here we investigated the effects of low-level laser therapy (LLLT; infrared, 810-nm) in experimentally induced rat knee inflammation. Thirty male Wistar rats (230-250 g) were anesthetized and injected with carrageenan by an intra-articular route. After 6 and 12 h, all animals were killed by CO(2) inhalation and the articular cavity was washed for cellular and biochemical analysis. Articular tissue was carefully removed for real-time PCR analysis in order to evaluate COX-1 and COX-2 expression. LLLT was able to significantly inhibit the total number of leukocytes, as well as the myeloperoxidase activity with 1, 3, and 6 J (Joules) of energy. This result was corroborated by cell counting showing the reduction of polymorphonuclear cells at the inflammatory site. Vascular extravasation was significantly inhibited at the higher dose of energy of 10 J. Both COX-1 and 2 gene expression were significantly enhanced by laser irradiation while PGE(2) production was inhibited. Low-level laser therapy operating at 810 nm markedly reduced inflammatory signs of inflammation but increased COX-1 and 2 gene expression. Further studies are necessary to investigate the possible production of antiinflammatory mediators by COX enzymes induced by laser irradiation in knee inflammation.
Resumo:
The goals of this study are to evaluate in vitro compatibility of magnetic nanomaterials and their therapeutic potential against cancer cells. Highly stable ionic magnetic fluid sample (maghemite, gamma-Fe2O3) and Selol were incorporated into polymeric nanocapsules by nanoprecipitation method. The cytotoxic effect of Selol-loaded magnetic nanocapsules was assessed on murine melanoma (B16-F10) and oral squamous cell carcinoma (OSCC) cell lines following AC magnetic field application. The influence of different nanocapsules on cell viability was investigated by colorimetric MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the absence of AC magnetic field Selol-loaded magnetic nanocapsules, containing 100 mu g/mL Selol plus 5 x 10(12) particle/mL, showed antitumoral activity of about 50% on B16-F10 melanoma cells while OSCC carcinoma cells demonstrated drug resistance at all concentrations of Selol and magnetic fluid (range of 100-500 mu g/mL Selol and 5 x 10(12) -2.5 x 10(13) particle/mL). On the other hand, under AC applied fields (1 MHz and 40 Oe amplitude) B16-F10 cell viability was reduced down to 40.5% (+/- 3.33) at the highest concentration of nanoencapsulated Selol. The major effect, however, was observed on OSCC cells since the cell viability drops down to about 33.3% (+/- 0.38) under application of AC magnetic field. These findings clearly indicate that the Selol-loaded magnetic nanocapsules present different toxic effects on neoplastic cell lines. Further, the cytotoxic effect was maximized under AC magnetic field application on OSCC, which emphasizes the effectiveness of the magnetohyperthermia approach. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3680541]