952 resultados para ACTIVATED GAAS
Resumo:
Using giant unilamellar vesicles (GUVs) made from POPC. DPPC, cholesterol and a small amount of a porphyrin-based photosensitizer that we name PE-porph, we investigated the response of the lipid bilayer under visible light, focusing in the formation of domains during the lipid oxidation induced by singlet oxygen. This reactive species is generated by light excitation of PE-porf in the vicinity of the membrane, and thus promotes formation of hydroperoxides when unsaturated lipids and cholesterol are present. Using optical microscopy we determined the lipid compositions under which GUVs initially in the homogeneous phase displayed Lo-Ld phase separation following irradiation. Such an effect is attributed to the in situ formation of both hydroperoxized POPC and cholesterol. The boundary line separating homogeneous Lo phase and phase coexistence regions in the phase diagram is displaced vertically towards the higher cholesterol content in respect to ternary diagram of POPC:DPPC:cholesterol mixtures in the absence of oxidized species. Phase separated domains emerge from sub-micrometer initial sizes to evolve over hours into large Lo-Ld domains completely separated in the lipid membrane. This study provides not only a new tool to explore the kinetics of domain formation in mixtures of lipid membranes, but may also have implications in biological signaling of redox misbalance. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The optoelectronic properties of InAs/GaAs quantum dots can be tuned by rapid thermal annealing. In this study, the morphology change of InAs/GaAs quantum dots layers induced by rapid thermal annealing was investigated at the atomic-scale by cross-sectional scanning tunneling microscopy. Finite elements calculations that model the outward relaxation of the cleaved surface were used to determine the indium composition profile of the wetting layer and the quantum dots prior and post rapid thermal annealing. The results show that the wetting layer is broadened upon annealing. This broadening could be modeled by assuming a random walk of indium atoms. Furthermore, we show that the stronger strain gradient at the location of the quantum dots enhances the intermixing. Photoluminescence measurements show a blueshift and narrowing of the photoluminescence peak. Temperature dependent photoluminescence measurements show a lower activation energy for the annealed sample. These results are in agreement with the observed change in morphology. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770371]
Resumo:
Morphologic changes on copper surfaces upon applying an established potential protocol were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results showed a good correlation between the time employed in the electrode activation and the resulting microstructure and electrochemical activity.
Resumo:
This paper discusses the theoretical and experimental results obtained for the excitonic binding energy (Eb) in a set of single and coupled double quantum wells (SQWs and CDQWs) of GaAs/AlGaAs with different Al concentrations (Al%) and inter-well barrier thicknesses. To obtain the theoretical Eb the method proposed by Mathieu, Lefebvre and Christol (MLC) was used, which is based on the idea of fractional-dimension space, together with the approach proposed by Zhao et al., which extends the MLC method for application in CDQWs. Through magnetophotoluminescence (MPL) measurements performed at 4 K with magnetic fields ranging from 0 T to 12 T, the diamagnetic shift curves were plotted and adjusted using two expressions: one appropriate to fit the curve in the range of low intensity fields and another for the range of high intensity fields, providing the experimental Eb values. The effects of increasing the Al% and the inter-well barrier thickness on Eb are discussed. The Eb reduction when going from the SQW to the CDQW with 5 Å inter-well barrier is clearly observed experimentally for 35% Al concentration and this trend can be noticed even for concentrations as low as 25% and 15%, although the Eb variations in these latter cases are within the error bars. As the Zhao's approach is unable to describe this effect, the wave functions and the probability densities for electrons and holes were calculated, allowing us to explain this effect as being due to a decrease in the spatial superposition of the wave functions caused by the thin inter-well barrier.
Resumo:
Previous studies have indicated that AMP-activated protein kinase (AMPK) plays a critical role in the control of cardiac hypertrophy mediated by different stimuli such as thyroid hormone (TH). Although the classical effects of TH mediating cardiac hypertrophy occur by transcriptional mechanisms, recent studies have identified other responses to TH, which are more rapid and take place in seconds or minutes evidencing that TH rapidly modulates distinct signaling pathway, which might contribute to the regulation of cardiomyocyte growth. Here, we evaluated the rapid effects of TH on AMPK signaling pathway in cultured cardiomyocytes and determined the involvement of AMPK in T3-induced cardiomyocyte growth. We found for the first time that T3 rapidly activated AMPK signaling pathway. The use of small interfering RNA against AMPK resulted in increased cardiomyocyte hypertrophy while the pharmacological stimulation of AMPK attenuated this process, demonstrating that AMPK contributes to regulation of T3-induced cardiomyocyte growth.
Resumo:
Protease-activated receptor 2 (PAR2) is implicated in the pathogenesis of chronic inflammatory diseases, including periodontitis; it can be activated by gingipain and produced by Porphyromonas gingivalis and by neutrophil protease 3 (P3). PAR2 activation plays a relevant role in inflammatory processes by inducing the release of important inflammatory mediators associated with periodontal breakdown. The effects of periodontal treatment on PAR2 expression and its association with levels of proinflammatory mediators and activating proteases were investigated in chronic periodontitis patients. Positive staining for PAR2 was observed in gingival crevicular fluid cells and was reflective of tissue destruction. Overexpression of PAR2 was positively associated with inflammatory clinical parameters and with the levels of interleukin-6 (IL-6), IL-8, tumor necrosis factor alpha, matrix metalloprotease 2 (MMP-2), MMP-8, hepatocyte growth factor, and vascular endothelial growth factor. Elevated levels of gingipain and P3 and decreased levels of dentilisin and the protease inhibitors secretory leukocyte protease inhibitor and elafin were also associated with PAR2 overexpression. Healthy periodontal sites from individuals with chronic periodontitis showed diminished expression of PAR2 mRNA and the PAR2 protein (P < 0.05). Furthermore, periodontal treatment resulted in decreased PAR2 expression and correlated with decreased expression of inflammatory mediators and activating proteases. We concluded that periodontal treatment resulted in decreased levels of proteases and that proinflammatory mediators are associated with decreased PAR2 expression, suggesting that PAR2 expression is influenced by the presence of periodontal infection and is not a constitutive characteristic favoring periodontal inflammation.
Resumo:
This study tested whether chronic systemic administration of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) could attenuate hyperphagia, reduce lean and fat mass losses, and improve whole-body energy homeostasis in insulin-deficient rats. Male Wistar rats were first rendered diabetic through streptozotocin (STZ) administration and then intraperitoneally injected with AICAR for 7 consecutive days. Food and water intake, ambulatory activity, and energy expenditure were assessed at the end of the AICAR-treatment period. Blood was collected for circulating leptin measurement and the hypothalami were extracted for the determination of suppressor of cytokine signaling 3 (SOCS3) content, as well as the content and phosphorylation of AMP-kinase (AMPK), acetyl-CoA carboxylase (ACC), and the signal transducer and activator of transcription 3 (STAT3). Rats were thoroughly dissected for adiposity and lean body mass (LBM) determinations. In non-diabetic rats, despite reducing adiposity, AICAR increased (∼1.7-fold) circulating leptin and reduced hypothalamic SOCS3 content and food intake by 67% and 25%, respectively. The anorexic effect of AICAR was lost in diabetic rats, even though hypothalamic AMPK and ACC phosphorylation markedly decreased in these animals. Importantly, hypothalamic SOCS3 and STAT3 levels remained elevated and reduced, respectively, after treatment of insulin-deficient rats with AICAR. Diabetic rats were lethargic and displayed marked losses of fat and LBM. AICAR treatment increased ambulatory activity and whole-body energy expenditure while also attenuating diabetes-induced fat and LBM losses. In conclusion, AICAR did not reverse hyperphagia, but it promoted anti-catabolic effects on skeletal muscle and fat, enhanced spontaneous physical activity, and improved the ability of rats to cope with the diabetes-induced dysfunctional alterations in glucose metabolism and whole-body energy homeostasis.
Resumo:
The aim of this study was to evaluate the compressive strength of microhybrid (FiltekTM Z250) and nanofilled (FiltekTM Supreme XT) composite resins photo-activated with two different light guide tips, fiber optic and polymer, coupled with one LED. The power density was 653 mW cm-2 when using the fiber optic light tip and 596 mW cm-2 with the polymer. After storage in distilled water at 37± 2 °C for seven days, the samples were subjected to mechanical testing of compressive strength in an EMIC universal mechanical testing machine with a load cell of 5 kN and speed of 0.5 mm min-1. The statistical analysis was performed using ANOVA with a confidence interval of 95% and Tamhane’s test. The results showed that the mean values of compressive strength were not influenced by the different light tips (p > 0.05). However, a statistical difference was observed (p < 0.001) between the microhybrid composite resin photo-activated with the fiber optic light tip and the nanofilled composite resin. Based on these results, it can be concluded that microhybrid composite resin photo-activated with the fiber optic light tip showed better results than nanofilled, regardless of the tip used, and the type of the light tip did not influence the compressive strength of either composite. Thus, the presented results suggest that both the fiber optic and polymer light guide tips provide adequate compressive strength to be used to make restorations. However, the fiber optic light tip associated with microhybrid composite resin may be an interesting option for restorations mainly in posterior teeth.
Resumo:
Objective: The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Methods: Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey's test, with a significance level set at 5%. Results: The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). Conclusions: The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness.
Resumo:
Time-resolved photoluminescence was employed to study electron-hole dynamics in radial heterostructured GaAs/AlGaAs/GaAs core/inner shell/outer shell nanowires. It was found that impurity random potential results in a red shift of the recombination time maximum with respect to the photoluminescence peak energy.
Resumo:
Programa de Ingeniería Electrónica