993 resultados para 7140-226
Resumo:
microRNA (miRNA) gene clusters are a group of miRNA genes clustered within a proximal distance on a chromosome. Although a large number of miRNA clusters have been uncovered in animal and plant genomes, the functional consequences of this arrangement are
Resumo:
Kallikrein 8 (KLK8) is a serine protease functioning in the central nervous system, and essential in many aspects of neuronal activities. Sequence comparison and gene expression analysis among diverse primate species identified a human-specific splice for
Resumo:
MicroRNAs (miRNAs) are endogenous similar to 22 nucleotide noncoding RNAs that regulate the expression of complementary messenger RNAs (mRNAs). Thousands of miRNA genes have been found in diverse species, and many of them are highly conserved. With the mi
Resumo:
Background: Due to the advances of high throughput technology and data-collection approaches, we are now in an unprecedented position to understand the evolution of organisms. Great efforts have characterized many individual genes responsible for the interspecies divergence, yet little is known about the genome-wide divergence at a higher level. Modules, serving as the building blocks and operational units of biological systems, provide more information than individual genes. Hence, the comparative analysis between species at the module level would shed more light on the mechanisms underlying the evolution of organisms than the traditional comparative genomics approaches. Results: We systematically identified the tissue-related modules using the iterative signature algorithm (ISA), and we detected 52 and 65 modules in the human and mouse genomes, respectively. The gene expression patterns indicate that all of these predicted modules have a high possibility of serving as real biological modules. In addition, we defined a novel quantity, "total constraint intensity,'' a proxy of multiple constraints (of co-regulated genes and tissues where the co-regulation occurs) on the evolution of genes in module context. We demonstrate that the evolutionary rate of a gene is negatively correlated with its total constraint intensity. Furthermore, there are modules coding the same essential biological processes, while their gene contents have diverged extensively between human and mouse. Conclusions: Our results suggest that unlike the composition of module, which exhibits a great difference between human and mouse, the functional organization of the corresponding modules may evolve in a more conservative manner. Most importantly, our findings imply that similar biological processes can be carried out by different sets of genes from human and mouse, therefore, the functional data of individual genes from mouse may not apply to human in certain occasions.
Resumo:
The regional distribution of an ancient Y-chromosome haplogroup C-M130 (Hg C) in Asia provides an ideal tool of dissecting prehistoric migration events. We identified 465 Hg C individuals out of 4284 males from 140 East and Southeast Asian populations. We genotyped these Hg C individuals using 12 Y-chromosome biallelic markers and 8 commonly used Y-short tandem repeats (Y-STRs), and performed phylogeographic analysis in combination with the published data. The results show that most of the Hg C subhaplogroups have distinct geographical distribution and have undergone long-time isolation, although Hg C individuals are distributed widely across Eurasia. Furthermore, a general south-to-north and east-to-west cline of Y-STR diversity is observed with the highest diversity in Southeast Asia. The phylogeographic distribution pattern of Hg C supports a single coastal 'Out-of-Africa' route by way of the Indian subcontinent, which eventually led to the early settlement of modern humans in mainland Southeast Asia. The northward expansion of Hg C in East Asia started similar to 40 thousand of years ago (KYA) along the coastline of mainland China and reached Siberia similar to 15 KYA and finally made its way to the Americas. Journal of Human Genetics (2010) 55, 428-435; doi:10.1038/jhg.2010.40; published online 7 May 2010
Resumo:
Hybridization between yak Poephagus grunniens and taurine Bos taurus or indicine B. indicus cattle has been widely practiced throughout the yak geographical range, and gene flow is expected to have occurred between these species. To assess the impact of cattle admixture on domestic yak, we examined 1076 domestic yak from 29 populations collected in China, Bhutan, Nepal, India, Pakistan, Kyrgyzstan, Mongolia and Russia using mitochondrial DNA and 17 autosomal microsatellite loci. A cattle diagnostic marker-based analysis reveals cattle-specific mtDNA and/or autosomal microsatellite allele introgression in 127 yak individuals from 22 populations. The mean level of cattle admixture across the populations, calculated using allelic information at 17 autosomal microsatellite loci, remains relatively low (mY(cattle) = 2.66 +/- 0.53% and Q(cattle) = 0.69 +/- 2.58%), although it varies a lot across populations as well as among individuals within population. Although the level of cattle admixture shows a clear geographical structure, with higher levels of admixture in the Qinghai-Tibetan Plateau and Mongolian and Russian regions, and lower levels in the Himalayan and Pamir Plateau region, our results indicate that the level of cattle admixture is not significantly correlated with the altitude across geographical regions as well as within geographical region. Although yak-cattle hybridization is primarily driven to produce F-1 hybrids, our results show that the subsequent gene flow between yak and cattle took place and has affected contemporary genetic make-up of domestic yak. To protect yak genetic integrity, hybridization between yak and cattle should be tightly controlled.
Resumo:
Spermiogenesis is a unique process in mammals during which haploid round spermatids mature into spermatozoa in the testis. Its successful completion is necessary for fertilization and its malfunction is an important cause of male infertility. Here, we report the high-confidence identification of 2116 proteins in mouse haploid germ cells undergoing spermiogenesis: 299 of these were testis-specific and 155 were novel. Analysis of these proteins showed many proteins possibly functioning in unique processes of spermiogenesis. Of the 84 proteins annotated to be involved in vesicle-related events, VAMP4 was shown to be important for acrosome biogenesis by in vivo knockdown experiments. Knockdown of VAMP4 caused defects of acrosomal vesicle fusion and significantly increased head abnormalities in spermatids from testis and sperm from the cauda epididymis. Analysis of chromosomal distribution of the haploid genes showed underrepresentation on the X chromosome and overrepresentation on chromosome 11, which were due to meiotic sex chromosome inactivation and expansion of testis-expressed gene families, respectively. Comparison with transcriptional data showed translational regulation during spermiogenesis. This characterization of proteins involved in spermiogenesis provides an inventory of proteins useful for understanding the mechanisms of male infertility and may provide candidates for drug targets for male contraception and male infertility.
Resumo:
Background: The emergence of agriculture about 10,000 years ago marks a dramatic change in human evolutionary history. The diet shift in agriculture societies might have a great impact on the genetic makeup of Neolithic human populations. The regionally restricted enrichment of the class I alcohol dehydrogenase sequence polymorphism (ADH1BArg47His) in southern China and the adjacent areas suggests Darwinian positive selection on this genetic locus during Neolithic time though the driving force is yet to be disclosed. Results: We studied a total of 38 populations (2,275 individuals) including Han Chinese, Tibetan and other ethnic populations across China. The geographic distribution of the ADH1B*47His allele in these populations indicates a clear east-to-west cline, and it is dominant in south-eastern populations but rare in Tibetan populations. The molecular dating suggests that the emergence of the ADH1B*47His allele occurred about 10,000 similar to 7,000 years ago. Conclusion: We present genetic evidence of selection on the ADH1BArg47His polymorphism caused by the emergence and expansion of rice domestication in East Asia. The geographic distribution of the ADH1B*47His allele in East Asia is consistent with the unearthed culture relic sites of rice domestication in China. The estimated origin time of ADH1B*47His allele in those populations coincides with the time of origin and expansion of Neolithic agriculture in southern China.
Resumo:
经DpnII限制酶消化大熊猫基因组DNA后, 选取150-500bp大小的片段构建了DNA文库。共克隆筛先了10个微卫星DNA座位, 并测定了其序列, 在此基础止设计了相应的PCR引物。这些座位能有效地应用于大熊猫的亲子鉴定。
Resumo:
用15种限制性内切酶和人28S、18S rDNA探针构建了懒猴属各物种核糖体DNA重复单位的限制性内切酶图谱。在进化速率较高的非转录间隔区, 在大、中、小獭猴中分别定位了23、24、24个酶切位点。结果表明, 懒猴属内似只有两个有效物种, 即大懒猴和小懒猴, 中懒猴与小懒猴的分化至多到半种级别。
Resumo:
以人28S,18S DNA为探针,用15种限制性内切酶构建了猕猴属6个种(M.mulatta、M.facsicularis、M.arctoides、M.assamensis、M.thibetana、M.nemestrina)和滇金丝猴(Rhinopithecus bieti),白颊长臂猿(Hylobates leucogenys)核糖体DNA重复单位的限制性内切酶图谱。红面猴(M.arctoides)与熊猴(M.assamensis)拥有完全相同的限制性内切酶图谱。基于内切酶图谱得到了68个信息位点并计算了各种rDNA重复型间的遗传距离。用PHYLIP version 3.5c软件包中的NEIGHBOR和RESTML程序,以滇金丝猴和白颊长臂猿为外群,构建了NJ树和最大似然树。两棵树的拓扑结构不完全一致,但恒河猴( (M.mulatta)和食蟹猴(M.facsicularis)总是位于树的基部。熊猴-红面猴(M.assamensis-M.arctoides)虽然与藏猴(M.thibetana)共享的限制性位点数更多,在NJ树上两类动物也最为接近,但在最大似然树中熊猴-红面猴却与平顶猴(M.nemestrina)聚在一起。因此,rDNA变异的数据尚不能对猕猴类动物进行有效的分组。
Resumo:
随机扩增多态DNA分析法(RAPD)是一种有效的近交系实验动物遗传监测手段。实验中一个有趣的结果是, 在OPG2、OPE4、OPE9的扩增产物中, 发现了严格的性别依赖的RAPD标记。OPE9扩增产物中, 凡雄性个体都有一条0.88kb的标记。OPG2、OPE4则在所有的雄性个体中多扩增出一条约1.2kb的带。通过交叉PCR扩增和斑点杂交证明OPG2、OPE4得到的雄性特异性RAPD标记虽分子大小一致, 但不具同源性。这些性别相关RAPD标记的染色体定位和性质分析正在进一步进行中。
Resumo:
利用陈旧皮张的DNA提取技术从鸡内金、鸭内金中提取DNA,通过特异扩增DNA片段聚合酶链式反应,以线粒体DNA细胞色素b通用引物中的L14841和H15149为引用扩增DNA片段,将扩增后的DNA用双脱氧链终止法测定其序列,所得结果证明鸡内金与鸭内金两种DNA序列有明显差异,开创了将分子遗传学技术引入动物药材鉴定的先例。