940 resultados para 3-D velocity around tidal fronts
Resumo:
The application of image-guided systems with or without support by surgical robots relies on the accuracy of the navigation process, including patient-to-image registration. The surgeon must carry out the procedure based on the information provided by the navigation system, usually without being able to verify its correctness beyond visual inspection. Misleading surrogate parameters such as the fiducial registration error are often used to describe the success of the registration process, while a lack of methods describing the effects of navigation errors, such as those caused by tracking or calibration, may prevent the application of image guidance in certain accuracy-critical interventions. During minimally invasive mastoidectomy for cochlear implantation, a direct tunnel is drilled from the outside of the mastoid to a target on the cochlea based on registration using landmarks solely on the surface of the skull. Using this methodology, it is impossible to detect if the drill is advancing in the correct direction and that injury of the facial nerve will be avoided. To overcome this problem, a tool localization method based on drilling process information is proposed. The algorithm estimates the pose of a robot-guided surgical tool during a drilling task based on the correlation of the observed axial drilling force and the heterogeneous bone density in the mastoid extracted from 3-D image data. We present here one possible implementation of this method tested on ten tunnels drilled into three human cadaver specimens where an average tool localization accuracy of 0.29 mm was observed.
Resumo:
INTRODUCTION We aimed to manipulate physiological determinants of severe exercise performance. We hypothesized that (1) beta-alanine supplementation would increase intramuscular carnosine and buffering capacity and dampen acidosis during severe cycling, (2) that high-intensity interval training (HIT) would enhance aerobic energy contribution during severe cycling, and (3) that HIT preceded by beta-alanine supplementation would have greater benefits. METHODS Sixteen active men performed incremental cycling tests and 90-s severe (110 % peak power) cycling tests at three time points: before and after oral supplementation with either beta-alanine or placebo, and after an 11-days HIT block (9 sessions, 4 × 4 min), which followed supplementation. Carnosine was assessed via MR spectroscopy. Energy contribution during 90-s severe cycling was estimated from the O2 deficit. Biopsies from m. vastus lateralis were taken before and after the test. RESULTS Beta-alanine increased leg muscle carnosine (32 ± 13 %, d = 3.1). Buffering capacity and incremental cycling were unaffected, but during 90-s severe cycling, beta-alanine increased aerobic energy contribution (1.4 ± 1.3 %, d = 0.5), concurrent with reduced O2 deficit (-5.0 ± 5.0 %, d = 0.6) and muscle lactate accumulation (-23 ± 30 %, d = 0.9), while having no effect on pH. Beta-alanine also enhanced motivation and perceived state during the HIT block. There were no between-group differences in adaptations to the training block, namely increased buffering capacity (+7.9 ± 11.9 %, p = 0.04, d = 0.6, n = 14) and glycogen storage (+30 ± 47 %, p = 0.04, d = 0.5, n = 16). CONCLUSIONS Beta-alanine did not affect buffering considerably, but has beneficial effects on severe exercise metabolism as well as psychological parameters during intense training phases.
Resumo:
Rationale: Life-threatening intraabdominal candidiasis (IAC) occurs in 30 to 40% of high-risk surgical intensive care unit (ICU) patients. Although early IAC diagnosis is crucial, blood cultures are negative, and the role of Candida score/colonization indexes is not established. Objectives: The aim of this prospective Fungal Infection Network of Switzerland (FUNGINOS) cohort study was to assess accuracy of 1,3-β-d-glucan (BG) antigenemia for diagnosis of IAC. Methods: Four hundred thirty-four consecutive adults with abdominal surgery or acute pancreatitis and ICU stay 72 hours or longer were screened: 89 (20.5%) at high risk for IAC were studied (68 recurrent gastrointestinal tract perforation, 21 acute necrotizing pancreatitis). Diagnostic accuracy of serum BG (Fungitell), Candida score, and colonization indexes was compared. Measurements and Main Results: Fifty-eight of 89 (65%) patients were colonized by Candida; 29 of 89 (33%) presented IAC (27 of 29 with negative blood cultures). Nine hundred twenty-one sera were analyzed (9/patient): median BG was 253 pg/ml (46–9,557) in IAC versus 99 pg/ml (8–440) in colonization (P < 0.01). Sensitivity and specificity of two consecutive BG measurements greater than or equal to 80 pg/ml were 65 and 78%, respectively. In recurrent gastrointestinal tract perforation it was 75 and 77% versus 90 and 38% (Candida score ≥ 3), 79 and 34% (colonization index ≥ 0.5), and 54 and 63% (corrected colonization index ≥ 0.4), respectively. BG positivity anticipated IAC diagnosis (5 d) and antifungal therapy (6 d). Severe sepsis/septic shock and death occurred in 10 of 11 (91%) and 4 of 11 (36%) patients with BG 400 pg/ml or more versus 5 of 18 (28%, P = 0.002) and 1 of 18 (6%, P = 0.05) with BG measurement less than 400 pg/ml. β-Glucan decreased in IAC responding to therapy and increased in nonresponse. Conclusions: BG antigenemia is superior to Candida score and colonization indexes and anticipates diagnosis of blood culture–negative IAC. This proof-of-concept observation in strictly selected high-risk surgical ICU patients deserves investigation of BG-driven preemptive therapy.
Resumo:
We present 3-D simulations of impacts into Asteroid 21 Lutetia, the subject of a fly-by by the European Space Agency's Rosetta mission to Comet 67P/Churyumov-Gerasimenko. Using a 3-D shape model of the asteroid, impacts of sizes sufficient to reproduce the observed craters in Lutetia's North Polar Crater Cluster (NPCC) as observed by the OSIRIS experiment have been simulated using the Smoothed Particle Hydrodynamics technique. The asteroid itself has been modelled both as a homogeneous body and as a body with an iron core.
Resumo:
Radiocarbon production, solar activity, total solar irradiance (TSI) and solar-induced climate change are reconstructed for the Holocene (10 to 0 kyr BP), and TSI is predicted for the next centuries. The IntCal09/SHCal04 radiocarbon and ice core CO2 records, reconstructions of the geomagnetic dipole, and instrumental data of solar activity are applied in the Bern3D-LPJ, a fully featured Earth system model of intermediate complexity including a 3-D dynamic ocean, ocean sediments, and a dynamic vegetation model, and in formulations linking radiocarbon production, the solar modulation potential, and TSI. Uncertainties are assessed using Monte Carlo simulations and bounding scenarios. Transient climate simulations span the past 21 thousand years, thereby considering the time lags and uncertainties associated with the last glacial termination. Our carbon-cycle-based modern estimate of radiocarbon production of 1.7 atoms cm−2 s−1 is lower than previously reported for the cosmogenic nuclide production model by Masarik and Beer (2009) and is more in-line with Kovaltsov et al. (2012). In contrast to earlier studies, periods of high solar activity were quite common not only in recent millennia, but throughout the Holocene. Notable deviations compared to earlier reconstructions are also found on decadal to centennial timescales. We show that earlier Holocene reconstructions, not accounting for the interhemispheric gradients in radiocarbon, are biased low. Solar activity is during 28% of the time higher than the modern average (650 MeV), but the absolute values remain weakly constrained due to uncertainties in the normalisation of the solar modulation to instrumental data. A recently published solar activity–TSI relationship yields small changes in Holocene TSI of the order of 1 W m−2 with a Maunder Minimum irradiance reduction of 0.85 ± 0.16 W m−2. Related solar-induced variations in global mean surface air temperature are simulated to be within 0.1 K. Autoregressive modelling suggests a declining trend of solar activity in the 21st century towards average Holocene conditions.
Resumo:
The bacterial flagellar motor is a remarkable nanomachine that provides motility through flagellar rotation. Prior structural studies have revealed the stunning complexity of the purified rotor and C-ring assemblies from flagellar motors. In this study, we used high-throughput cryo-electron tomography and image analysis of intact Borrelia burgdorferi to produce a three-dimensional (3-D) model of the in situ flagellar motor without imposing rotational symmetry. Structural details of B. burgdorferi, including a layer of outer surface proteins, were clearly visible in the resulting 3-D reconstructions. By averaging the 3-D images of approximately 1,280 flagellar motors, a approximately 3.5-nm-resolution model of the stator and rotor structures was obtained. flgI transposon mutants lacked a torus-shaped structure attached to the flagellar rod, establishing the structural location of the spirochetal P ring. Treatment of intact organisms with the nonionic detergent NP-40 resulted in dissolution of the outermost portion of the motor structure and the C ring, providing insight into the in situ arrangement of the stator and rotor structures. Structural elements associated with the stator followed the curvature of the cytoplasmic membrane. The rotor and the C ring also exhibited angular flexion, resulting in a slight narrowing of both structures in the direction perpendicular to the cell axis. These results indicate an inherent flexibility in the rotor-stator interaction. The FliG switching and energizing component likely provides much of the flexibility needed to maintain the interaction between the curved stator and the relatively symmetrical rotor/C-ring assembly during flagellar rotation.
Resumo:
Mechanisms underlying chronic pain that develops after spinal cord injury (SCI) are incompletely understood. Most research on SCI pain mechanisms has focused on neuronal alterations within pain pathways at spinal and supraspinal levels associated with inflammation and glial activation. These events might also impact central processes of primary sensory neurons, triggering in nociceptors a hyperexcitable state and spontaneous activity (SA) that drive behavioral hypersensitivity and pain. SCI can sensitize peripheral fibers of nociceptors and promote peripheral SA, but whether these effects are driven by extrinsic alterations in surrounding tissue or are intrinsic to the nociceptor, and whether similar SA occurs in nociceptors in vivo are unknown. We show that small DRG neurons from rats (Rattus norvegicus) receiving thoracic spinal injury 3 d to 8 months earlier and recorded 1 d after dissociation exhibit an elevated incidence of SA coupled with soma hyperexcitability compared with untreated and sham-treated groups. SA incidence was greatest in lumbar DRG neurons (57%) and least in cervical neurons (28%), and failed to decline over 8 months. Many sampled SA neurons were capsaicin sensitive and/or bound the nociceptive marker, isolectin B4. This intrinsic SA state was correlated with increased behavioral responsiveness to mechanical and thermal stimulation of sites below and above the injury level. Recordings from C- and Aδ-fibers revealed SCI-induced SA generated in or near the somata of the neurons in vivo. SCI promotes the entry of primary nociceptors into a chronic hyperexcitable-SA state that may provide a useful therapeutic target in some forms of persistent pain.
Resumo:
Purpose: Congenital uterine anomalies often remain asymptomatic until they cause problems, for example during pregnancy. We studied the diagnostic aspects of two- and three-dimensional ultrasound and MRI. Materials and Methods: 63 women referred for suspected uterine anomalies were studied: In the first group (until July 2008) with 2 D-US and MRI, in the second group (from August 2008) additionally with 3 D-US; these women also had diagnostic or therapeutic operative confirmation. In the third group, only 3D-US was used. Results: In all women 3D-US was possible and successful. The most common anomaly was a subseptate uterus, while a septate uterus was less frequent, and uterus bicornis (unicollis) and uterus didelphys (bicornis bicollis) were rare. The women in the first two groups all underwent at least diagnostic hysteroscopy, and some (subseptate or septate uterus) underwent operative hysteroscopy. After preoperative volume imaging, laparoscopies were required less often. 3D-US diagnoses as judged by intraoperative findings were correct in 100 % of cases, while the MRI diagnoses in the same group were correct in only 7/13 cases. Conclusion: Since the introduction of volume imaging (MRI, later 3 D-US), laparoscopy during hysteroscopic septum resection was not necessary in the majority of cases. 3D-US brings the diagnostics of uterine anomalies back into the hands of the gynecologist and can provide the gynecological surgeon with a higher subjective degree of certainty during operative hysteroscopy.
Resumo:
Tenascin-C (TNC) is a multidomain extracellular matrix protein that contributes to organogenesis and tumorgenesis. To elucidate its developmental function in the context of TNC deficiency, lung lobes of TNC null mice were obtained at Embryonic Days E11.5 and E12.5 and cultured for 3 d. In lung explants of homozygote TNC-deficient embryos (E12.5) the number of future airway branches was reduced by 36% as compared with wild-type. In heterozygote explants only half of the reduction (18%) was observed. No significant alteration, neither of the explant growth nor of the pattern of airway branching, was noticed in TNC-null explants. However, the terminal endbuds of the transgenic explants were enlarged. The results are supported by a morphologic investigation at Postnatal Day P2, where the airspaces of TNC-deficient lungs appeared larger than in wild-type lungs. Taken together, our results represent the first developmental phenotype of TNC-null mice. We conclude that TNC takes part in the control of fetal lung branching, and that not only the presence of TNC but also its amount is important. Because TNC is predominantly expressed at the growing tip of the future airways, we hypothesize that TNC promotes the penetration into the surrounding mesenchyme and the branching of the growing airways.
Resumo:
This paper addresses the microscale heat transfer problem from heated lattice to the gas. A micro-device for enhanced heat transfer is presented and numerically investigated. Thermal creep induces 3-D vortex structures in the vicinity of the lattice. The gas flow is in the slip flow regime (Knudsen number Kn⩽0.1Kn⩽0.1). The simulations are performed using slip flow Navier–Stokes equations with boundary condition formulations proposed by Maxwell and Smoluchowski. In this study the wire thicknesses and distances of the heated lattice are varied. The surface geometrical properties alter significantly heat flux through the surface.
Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present
Resumo:
As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now linked not only to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for general circulation model (GCM) and chemistry–climate model (CCM) simulations. This new volcanic forcing, covering the 1600–present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO2 masses. Results for recent eruptions show reasonable agreement with observations. By providing these new estimates of spatial distributions of shortwave and long-wave radiative perturbations, this volcanic forcing may help to better constrain the climate model responses to volcanic eruptions in the 1600–present period. The final data set consists of 3-D values (with constant longitude) of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.
Resumo:
Long- and short-term strain variations along the Australian-Pacific plate boundary through the South Island of New Zealand, including a 300% increase in orogen width, coexistence of oblique thrusting on orthogonal structures, and variability in the locus of orogenic gold deposits, coincide with rheologically relevant geological variation. Our model investigates the consequences of thin, strong lower crust in the north and thick, weak lower crust in the south. Solution of the full 3-D mechanical equations reproduces the larger wavelength strain patterns of the orogen. A 3-D perturbation-based analytical solution leads to the identification of the sensitivity of displacement type to minor stress changes. Transition from boundary-normal thrusting to boundary-parallel thrusting occurs at the transition from strong to weak lower crust and is related to an increase in either tau(yz) (shear stress in the yz plane) or the ratio of the coordinate normal stresses, (sigma(yy)/sigma(xx)), where x and y are in the horizontal and z is vertical. Both mechanisms are compatible with the geologically dependent rheological variation employed in our model. Citation: Upton, P., P. O. Koons, D. Craw, C. M. Henderson, and R. Enlow (2009), Along-strike differences in the Southern Alps of New Zealand: Consequences of inherited variation in rheology, Tectonics, 28, TC2007, doi:10.1029/2008TC002353.
Resumo:
A set of high resolution surface ground penetrating radar (GPR) surveys, combined with elevation rod ( to monitor surface deformation) and gas flux measurements, were used to investigate in situ biogenic gas dynamics within a northern peatland (Caribou Bog, Maine). Gas production rates were directly estimated from the time series of GPR measurements. Spatial variability in gas production was also investigated by comparing two sites with different geological and ecological attributes, showing differences and/or similarities depending on season. One site characterized by thick highly humified peat deposits (5-6 m), wooded heath vegetation and open pools showed large ebullition events during the summer season, with estimated emissions (based on an assumed range of CH(4) concentration) between 100 and 172 g CH(4) m(-2) during a single event. The other site characterized by thinner less humified peat deposits (2-3 m) and shrub vegetation showed much smaller ebullition events during the same season (between 13 and 23 g CH(4) m(-2)). A consistent period of free-phase gas (FPG) accumulation during the fall and winter, enhanced by the frozen surficial peat acting as a confining layer, was followed by a decrease in FPG after the snow/ice melt that released estimated fluxes between 100 and 200 g CH(4) m(-2) from both sites. Estimated FPG production rates during periods of biogenic gas accumulation ranged between 0.22 and 2.00 g CH(4) m(3) d(-1) and reflected strong seasonal and spatial variability associated with differences in temperature, peat soil properties, and/or depositional attributes (e. g., stratigraphy). Periods of decreased atmospheric pressure coincided with short-period increases in biogenic gas flux, including a very rapid decrease in FPG content associated with an ebullition event that released an estimated 39 and 67 g CH(4) m(-2) in less than 3.5 hours. These results provide insights into the spatial and seasonal variability in production and emission of biogenic gases from northern peatlands.
Resumo:
The effect of descaling injury on the osmoregulatory ability of hatchery Atlantic salmon Salmo salar smolts in seawater was investigated. Experimental series were initiated during early, middle, and late periods of the spring smolt migration (April 25, May 11, and May 31, respectively). For each time series, descaled smolts (subjected to descaling on 10% of the body surface area) and control smolts (held out of water for 15 s) were transferred to seawater at 0, 1, 3, or 7 d posttreatment. After fish were held in 35% seawater for 24 h, gill and blood samples were collected and analyzed for Na(+),K(+)-ATPase activity and plasma osmolyte levels. Based on gill Na(+),K(+)-ATPase activity, the three series spanned the period from early smolting (increasing activity) to de-smolting (decreasing activity). In each series, descaled fish transferred to seawater at 0 and 1 d posttreatment had greater plasma osmolality than control fish; descaled fish transferred to seawater at 3 d posttreatment did not differ from controls. The greatest perturbation in osmolality (70 milliosmoles) was observed at the peak of smolting (middle series), whereas lesser increases were seen for early and late-series smolts. The observed osmotic perturbations in descaled fish would probably reduce performance and decrease survival during smolt migration.