989 resultados para 135-835A
Resumo:
A number of reports have demonstrated the importance of the CUB domaincontaining protein 1 (CDCP1) in facilitating cancer progression in animal models and the potential of this protein as a prognostic marker in several malignancies. CDCP1 facilitates metastasis formation in animal models by negatively regulating anoikis, a type of apoptosis triggered by the loss of attachment signalling from cell-cell contacts or cell-extra cellular matrix (ECM) contacts. Due to the important role CDCP1 plays in cancer progression in model systems, it is considered a potential drug target to prevent the metastatic spread of cancers. CDCP1 is a highly glycosylated 836 amino acid cell surface protein. It has structural features potentially facilitating protein-protein interactions including 14 N-glycosylation sites, three CUB-like domains, 20 cysteine residues likely to be involved in disulfide bond formation and five intracellular tyrosine residues. CDCP1 interacts with a variety of proteins including Src family kinases (SFKs) and protein kinase C ä (PKCä). Efforts to understand the mechanisms regulating these interactions have largely focussed on three CDCP1 tyrosine residues Y734, Y743 and Y762. CDCP1-Y734 is the site where SFKs phosphorylate and bind to CDCP1 and mediate subsequent phosphorylation of CDCP1-Y743 and -Y762 which leads to binding of PKCä at CDCP1-Y762. The resulting trimeric protein complex of SFK•CDCP1•PKCä has been proposed to mediate an anti-apoptotic cell phenotype in vitro, and to promote metastasis in vivo. The effect of mutation of the three tyrosines on interactions of CDCP1 with SFKs and PKCä and the consequences on cell phenotype in vitro and in vivo have not been examined. CDCP1 has a predicted molecular weight of ~90 kDa but is usually detected as a protein which migrates at ~135 kDa by Western blot analysis due to its high degree of glycosylation. A low molecular weight form of CDCP1 (LMWCDCP1) of ~70 kDa has been found in a variety of cancer cell lines. The mechanisms leading to the generation of LMW-CDCP1 in vivo are not well understood but an involvement of proteases in this process has been proposed. Serine proteases including plasmin and trypsin are able to proteolytically process CDCP1. In addition, the recombinant protease domain of the serine protease matriptase is also able to cleave the recombinant extracellular portion of CDCP1. Whether matriptase is able to proteolytically process CDCP1 on the cell surface has not been examined. Importantly, proteolytic processing of CDCP1 by trypsin leads to phosphorylation of its cell surface-retained portion which suggests that this event leads to initiation of an intracellular signalling cascade. This project aimed to further examine the biology of CDCP1 with a main of focus on exploring the roles played by CDCP1 tyrosine residues. To achieve this HeLa cells stably expressing CDCP1 or the CDCP1 tyrosine mutants Y734F, Y743F and Y762F were generated. These cell lines were used to examine: • The roles of the tyrosine residues Y734, Y743 and Y762 in mediating interactions of CDCP1 with binding proteins and to examine the effect of the stable expression on HeLa cell morphology. • The ability of the serine protease matriptase to proteolytically process cell surface CDCP1 and to examine the consequences of this event on HeLa cell phenotype and cell signalling in vitro. • The importance of these residues in processes associated with cancer progression in vitro including adhesion, proliferation and migration. • The role of these residues on metastatic phenotype in vivo and the ability of a function-blocking anti-CDCP1 antibody to inhibit metastasis in the chicken embryo chorioallantoic membrane (CAM) assay. Interestingly, biochemical experiments carried out in this study revealed that mutation of certain CDCP1 tyrosine residues impacts on interactions of this protein with binding proteins. For example, binding of SFKs as well as PKCä to CDCP1 was markedly decreased in HeLa-CDCP1-Y734F cells, and binding of PKCä was also reduced in HeLa-CDCP1-Y762F cells. In contrast, HeLa-CDCP1-Y743F cells did not display altered interactions with CDCP1 binding proteins. Importantly, observed differences in interactions of CDCP1 with binding partners impacted on basal phosphorylation of CDCP1. It was found that HeLa-CDCP1, HeLa-CDCP1-Y743F and -Y762F displayed strong basal levels of CDCP1 phosphorylation. In contrast, HeLa-CDCP1-Y734F cells did not display CDCP1 phosphorylation but exhibited constitutive phosphorylation of focal adhesion kinase (FAK) at tyrosine 861. Significantly, subsequent investigations to examine this observation suggested that CDCP1-Y734 and FAK-Y861 are competitive substrates for SFK-mediated phosphorylation. It appeared that SFK-mediated phosphorylation of CDCP1- Y734 and FAK-Y861 is an equilibrium which shifts depending on the level of CDCP1 expression in HeLa cells. This suggests that the level of CDCP1 expression may act as a regulatory mechanism allowing cells to switch from a FAK-Y861 mediated pathway to a CDCP1-Y734 mediated pathway. This is the first time that a link between SFKs, CDCP1 and FAK has been demonstrated. One of the most interesting observations from this work was that CDCP1 altered HeLa cell morphology causing an elongated and fibroblastic-like appearance. Importantly, this morphological change depended on CDCP1- Y734. In addition, it was observed that this change in cell morphology was accompanied by increased phosphorylation of SFK-Y416. This suggests that interactions of SFKs with CDCP1-Y734 increases SFK activity since SFKY416 is critical in regulating kinase activity of these proteins. The essential role of SFKs in mediating CDCP1-induced HeLa cell morphological changes was demonstrated using the SFK-selective inhibitor SU6656. This inhibitor caused reversion of HeLa-CDCP1 cell morphology to an epithelial appearance characteristic of HeLa-vector cells. Significantly, in vitro studies revealed that certain CDCP1-mediated cell phenotypes are mediated by cellular pathways dependent on CDCP1 tyrosine residues whereas others are independent of these sites. For example, CDCP1 expression caused a marked increase in HeLa cell motility that was independent of CDCP1 tyrosine residues. In contrast, CDCP1- induced decrease in HeLa cell proliferation was most prominent in HeLa- CDCP1-Y762F cells, potentially indicating a role for this site in regulating proliferation in HeLa cells. Another cellular event which was identified to require phosphorylation of a particular CDCP1 tyrosine residue is adhesion to fibronectin. It was observed that the CDCP1-mediated strong decrease in adhesion to fibronectin is mostly restored in HeLa-CDCP1-Y743F cells. This suggests a possible role for CDCP1-Y743 in causing a CDCP1-mediated decrease in adhesion. Data from in vivo experiments indicated that HeLa-CDCP1-Y734F cells are more metastic than HeLa-CDCP1 cells in vivo. This indicates that interaction of CDCP1 with SFKs and PKCä may not be required for CDCP1-mediated metastasis formation of HeLa cells in vivo. The metastatic phenotype of these cells may be caused by signalling involving FAK since HeLa-CDCP1- Y734F cells are the only CDCP1 expressing cells displaying constitutive phosphorylation of FAK-Y861. HeLa-CDCP1-Y762F cells displayed a very low metastatic ability which suggests that this CDCP1 tyrosine residue is important in mediating a pro-metastatic phenotype in HeLa cells. More detailed exploration of cellular events occurring downstream of CDCP1-Y734 and -Y762 may provide important insights into the mechanisms altering the metastatic ability of CDCP1 expressing HeLa cells. Complementing the in vivo studies, anti-CDCP1 antibodies were employed to assess whether these antibodies are able to inhibit metastasis of CDCP1 and CDCP1 tyrosine mutants expressing HeLa cells. It was found that HeLa- CDCP1-Y734F cells were the only cell line which was markedly reduced in the ability to metastasise. In contrast, the ability of HeLa-CDCP1, HeLa- CDCP1-Y743F and -Y762F cells to metastasise in vivo was not inhibited. These data suggest a possible role of interactions of CDCP1 with SFKs, occurring at CDCP1-Y734, in preventing an anti-metastatic effect of anti- CDCP1 antibodies in vivo. The proposal that SFKs may play a role in regulating anti-metastatic effects of anti-CDCP1 antibodies was supported by another experiment where differences between HeLa-CDCP1 cells and CDCP1 expressing HeLa cells (HeLa-CDCP1-S) from collaborators at the Scripps Research Institute were examined. It was found that HeLa-CDCP1-S cells express different SFKs than CDCP1 expressing HeLa cells generated for this study. This is important since HeLa-CDCP1-S cells can be inhibited in their metastatic ability using anti-CDCP1 antibodies in vivo. Importantly, these data suggest that further examinations of the roles of SFKs in facilitating anti-metastatic effects of anti-CDCP1 antibodies may give insights into how CDCP1 can be blocked to prevent metastasis in vivo. This project also explored the ability of the serine protease matriptase to proteolytically process cell surface localised CDCP1 because it is unknown whether matriptase can cleave cell surface CDCP1 as it has been reported for other proteases such as trypsin and plasmin. Furthermore, the consequences of matriptase-mediated proteolysis on cell phenotype in vitro and cell signalling were examined since recent reports suggested that proteolysis of CDCP1 leads to its phosphorylation and may initiate cell signalling and consequently alter cell phenotype. It was found that matriptase is able to proteolytically process cell surface CDCP1 at low nanomolar concentrations which suggests that cleavage of CDCP1 by matriptase may facilitate the generation of LWM-CDCP1 in vivo. To examine whether matriptase-mediated proteolysis induced cell signalling anti-phospho Erk 1/2 Western blot analysis was performed as this pathway has previously been examined to study signalling in response to proteolytic processing of cell surface proteins. It was found that matriptase-mediated proteolysis in CDCP1 expressing HeLa cells initiated intracellular signalling via Erk 1/2. Interestingly, this increase in phosphorylation of Erk 1/2 was also observed in HeLa-vector cells. This suggested that initiation of cell signalling via Erk 1/2 phosphorylation as a result of matriptase-mediated proteolysis occurs by pathways independent of CDCP1. Subsequent investigations measuring the flux of free calcium ions and by using a protease-activated receptor 2 (PAR2) agonist peptide confirmed this hypothesis. These data suggested that matriptase-mediated proteolysis results in cell signalling via a pathway induced by the activation of PAR2 rather than by CDCP1. This indicates that induction of cell signalling in HeLa cells as a consequence of matriptase-mediated proteolysis occurs via signalling pathways which do not involve phosphorylation of Erk 1/2. Consequently, it appears that future attempts should focus on the examination of cellular pathways other than Erk 1/2 to elucidate cell signalling initiated by matriptase-mediated proteolytic processing of CDCP1. The data presented in this thesis has explored in vitro and in vivo aspects of the biology of CDCP1. The observations summarised above will permit the design of future studies to more precisely determine the role of CDCP1 and its binding partners in processes relevant to cancer progression. This may contribute to further defining CDCP1 as a target for cancer treatment.
Resumo:
Background This economic evaluation reports the results of a detailed study of the cost of major trauma treated at Princess Alexandra Hospital (PAH), Australia. Methods A bottom-up approach was used to collect and aggregate the direct and indirect costs generated by a sample of 30 inpatients treated for major trauma at PAH in 2004. Major trauma was defined as an admission for Multiple Significant Trauma with an Injury Severity Score >15. Direct and indirect costs were amalgamated from three sources, (1) PAH inpatient costs, (2) Medicare Australia, and (3) a survey instrument. Inpatient costs included the initial episode of inpatient care including clinical and outpatient services and any subsequent representations for ongoing-related medical treatment. Medicare Australia provided an itemized list of pharmaceutical and ambulatory goods and services. The survey instrument collected out-of-pocket expenses and opportunity cost of employment forgone. Inpatient data obtained from a publically funded trauma registry were used to control for any potential bias in our sample. Costs are reported in Australian dollars for 2004 and 2008. Results The average direct and indirect costs of major trauma incurred up to 1-year postdischarge were estimated to be A$78,577 and A$24,273, respectively. The aggregate costs, for the State of Queensland, were estimated to range from A$86.1 million to $106.4 million in 2004 and from A$135 million to A$166.4 million in 2008. Conclusion These results demonstrate that (1) the costs of major trauma are significantly higher than previously reported estimates and (2) the cost of readmissions increased inpatient costs by 38.1%.
Resumo:
In 2008, the Australian federal Senate held an Inquiry into the Sexualisation of Children in the Contemporary Media Environment. I made a submission to this Inquiry, noting that in public debate about this topic a number of quite distinct issues, with distinct aetiologies, were collapsed together. These included: child pornography; children being targeted by any form of marketing; young people becoming sexually active; sexual abuse of children; raunch culture; protecting children from any sexualised material in the media; and body image disorders. I suggested that commentators had collapsed these issues together because the image of the helpless child is a powerful one for critics to challenge undesirable aspects of contemporary culture. The result of many different ideological viewpoints all using the same argument - that the forms of culture they didn't like were damaging children - gives the impression that there is no element of culture today that isn't (somebody claims) causing harm to children: everything is child abuse. The danger of such discourses is that they draw attention away from the real harm that is being caused to children by sexual and other forms of maltreatment - which overwhelmingly occur within families, and for reasons ignored in these debates.
Resumo:
In this chapter, Shaleen Prowse describes teaching strategies for media education and information communication technologies (ICT) and how young children’s experiences with tools of technology at home are an important starting point for building learning experiences within the classroom setting. She illustrates how digital cameras and computer editing software assist young children to share their learning.
Resumo:
We investigate the behavior of the empirical minimization algorithm using various methods. We first analyze it by comparing the empirical, random, structure and the original one on the class, either in an additive sense, via the uniform law of large numbers, or in a multiplicative sense, using isomorphic coordinate projections. We then show that a direct analysis of the empirical minimization algorithm yields a significantly better bound, and that the estimates we obtain are essentially sharp. The method of proof we use is based on Talagrand’s concentration inequality for empirical processes.
Resumo:
Abstract Opioid drugs, such as morphine, are among the most effective analgesics available. However, their utility for the treatment of chronic pain is limited by side effects including tolerance and dependence. Morphine acts primarily through the mu-opioid receptor (MOP-R) , which is also a target of endogenous opioids. However, unlike endogenous ligands, morphine fails to promote substantial receptor endocytosis both in vitro, and in vivo. Receptor endocytosis serves at least two important functions in signal transduction. First, desensitization and endocytosis act as an "off" switch by uncoupling receptors from G protein. Second, endocytosis functions as an "on" switch, resensitizing receptors by recycling them to the plasma membrane. Thus, both the off and on function of the MOP-R are altered in response to morphine compared to endogenous ligands. To examine whether the low degree of endocytosis induced by morphine contributes to tolerance and dependence, we generated a knockin mouse that expresses a mutant MOP-R that undergoes morphine-induced endocytosis. Morphine remains an excellent antinociceptive agent in these mice. Importantly, these mice display substantially reduced antinociceptive tolerance and physical dependence. These data suggest that opioid drugs with a pharmacological profile similar to morphine but the ability to promote endocytosis could provide analgesia while having a reduced liability for promoting tolerance and dependence
Resumo:
Background: Previous studies have found high temperatures increase the risk of mortality in summer. However, little is known about whether a sharp decrease or increase in temperature between neighbouring days has any effect on mortality. Method: Poisson regression models were used to estimate the association between temperature change and mortality in summer in Brisbane, Australia during 1996–2004 and Los Angeles, United States during 1987–2000. The temperature change was calculated as the current day’s mean temperature minus the previous day’s mean. Results: In Brisbane, a drop of more than 3 °C in temperature between days was associated with relative risks (RRs) of 1.157 (95% confidence interval (CI): 1.024, 1.307) for total non external mortality (NEM), 1.186 (95%CI: 1.002, 1.405) for NEM in females, and 1.442 (95%CI: 1.099, 1.892) for people aged 65–74 years. An increase of more than 3 °C was associated with RRs of 1.353 (95%CI: 1.033, 1.772) for cardiovascular mortality and 1.667 (95%CI: 1.146, 2.425) for people aged < 65 years. In Los Angeles, only a drop of more than 3 °C was significantly associated with RRs of 1.133 (95%CI: 1.053, 1.219) for total NEM, 1.252 (95%CI: 1.131, 1.386) for cardiovascular mortality, and 1.254 (95%CI: 1.135, 1.385) for people aged ≥75 years. In both cities, there were joint effects of temperature change and mean temperature on NEM. Conclusion : A significant change in temperature of more than 3 °C, whether positive or negative, has an adverse impact on mortality even after controlling for the current temperature.
Resumo:
In the structure of title compound [Rb2(C7H4NO2)2(H2O)2]n the centrosymmetric cyclic dimeric repeating unit comprises two irregular RbO4 complex centres bridged by the carboxylate groups of the 5-nitrosalicylate ligands. The coordination about each Rb is completed by a monodentate water molecule and a phenolic O donor which gives a bridging extension [Rb-O range 3.116(7)-3.135(5)A]. The two-dimensional polymeric structure is stabilized by intermolecular water O-H...O(carboxyl) hydrogen bonds and weak inter-ring pi--pi interactions [minimum ring centroid separation, 3.620(4)A].