694 resultados para web-based learning
Resumo:
Esta dissertação surgiu a partir do desejo de contar a minha experiência como professora de Educação de Jovens e Adultos, como eu a vivi, o que aprendi e o que ainda quero descobrir. É nesta medida que, através deste trabalho, pesquisei e ouvi os relatos dos professores, pensando em suas práticas cotidianas, suas subjetividades e suas relações com os conteúdos escolares e com os saberes dos alunos, buscando identificar práticas emancipatórias em seus processos educativos cotidianos. As vozes dos alunos, tornam-se audíveis também, através das narrativas de suas vivências, que permitem, também, identificar atividades emancipatórias em meio aos seus processos de aprendizagem. Narrativas de alunos e narrativas de professores se entrelaçam criando uma trama da memória cotidiana, sobre a qual Nilda Alves (2008) chama a atenção por ser uma narrativa não linear e sujeita a diversas interrupções e introduções de outras histórias paralelas. Dessa forma, busquei fazer um entrelaçamento entre narrativas de professores e alunos, procurando tecer uma rede a partir da narrativa da vida e da literaturização da ciência.
Resumo:
Os SIG estão se popularizando cada vez mais e isso tem se dado principalmente através da Internet. Os assim chamados SIG-Web no entanto, quando desenvolvidos com as tecnologias tradicionais de web, apresentam as mesmas fraquezas daquelas, a saber: sincronicidade e pobreza na interação com o usuário. As tecnologias usadas para Rich Internet Applications (RIA) são uma alternativa que resolvem esses problemas. Na presente dissertação será demonstrada a factibilidade do seu uso para o desenvolvimento de SIG-Web, oferecendo um conjunto de códigos e estratégias para desenvolvimentos futuros, a partir de um conjunto básico de operações a se realizar em um SIG-Web. Adicionalmente será proposta a UWE-R, uma extensão a uma metodologia de engenharia web existente, para modelagem de RIA e SIG-Web.
Resumo:
Predicting and averting the spread of invasive species is a core focus of resource managers in all ecosystems. Patterns of invasion are difficult to forecast, compounded by a lack of user-friendly species distribution model (SDM) tools to help managers focus control efforts. This paper presents a web-based cellular automata hybrid modeling tool developed to study the invasion pattern of lionfish (Pterois volitans/miles) in the western Atlantic and is a natural extension our previous lionfish study. Our goal is to make publically available this hybrid SDM tool and demonstrate both a test case (P. volitans/miles) and a use case (Caulerpa taxifolia). The software derived from the model, titled Invasionsoft, is unique in its ability to examine multiple default or user-defined parameters, their relation to invasion patterns, and is presented in a rich web browser-based GUI with integrated results viewer. The beta version is not species-specific and includes a default parameter set that is tailored to the marine habitat. Invasionsoft is provided as copyright protected freeware at http://www.invasionsoft.com.
Resumo:
Perceptual learning improves perception through training. Perceptual learning improves with most stimulus types but fails when . certain stimulus types are mixed during training (roving). This result is surprising because classical supervised and unsupervised neural network models can cope easily with roving conditions. What makes humans so inferior compared to these models? As experimental and conceptual work has shown, human perceptual learning is neither supervised nor unsupervised but reward-based learning. Reward-based learning suffers from the so-called unsupervised bias, i.e., to prevent synaptic " drift" , the . average reward has to be exactly estimated. However, this is impossible when two or more stimulus types with different rewards are presented during training (and the reward is estimated by a running average). For this reason, we propose no learning occurs in roving conditions. However, roving hinders perceptual learning only for combinations of similar stimulus types but not for dissimilar ones. In this latter case, we propose that a critic can estimate the reward for each stimulus type separately. One implication of our analysis is that the critic cannot be located in the visual system. © 2011 Elsevier Ltd.
Resumo:
Animals repeat rewarded behaviors, but the physiological basis of reward-based learning has only been partially elucidated. On one hand, experimental evidence shows that the neuromodulator dopamine carries information about rewards and affects synaptic plasticity. On the other hand, the theory of reinforcement learning provides a framework for reward-based learning. Recent models of reward-modulated spike-timing-dependent plasticity have made first steps towards bridging the gap between the two approaches, but faced two problems. First, reinforcement learning is typically formulated in a discrete framework, ill-adapted to the description of natural situations. Second, biologically plausible models of reward-modulated spike-timing-dependent plasticity require precise calculation of the reward prediction error, yet it remains to be shown how this can be computed by neurons. Here we propose a solution to these problems by extending the continuous temporal difference (TD) learning of Doya (2000) to the case of spiking neurons in an actor-critic network operating in continuous time, and with continuous state and action representations. In our model, the critic learns to predict expected future rewards in real time. Its activity, together with actual rewards, conditions the delivery of a neuromodulatory TD signal to itself and to the actor, which is responsible for action choice. In simulations, we show that such an architecture can solve a Morris water-maze-like navigation task, in a number of trials consistent with reported animal performance. We also use our model to solve the acrobot and the cartpole problems, two complex motor control tasks. Our model provides a plausible way of computing reward prediction error in the brain. Moreover, the analytically derived learning rule is consistent with experimental evidence for dopamine-modulated spike-timing-dependent plasticity.
Resumo:
采用预测控制算法给出了一种带有时延补偿器的新的控制结构,分别在前向通道和反馈通道设计补偿器对网络时延进行补偿.实验结果表明:带有预测器及补偿器的新的控制结构可以改善系统的动态性能,并且能够保证系统在具有时延和数据丢失的环境下的稳定性.
Resumo:
Internet连接了全球的计算机 ,它为人们提供了分享数据、图片、影像甚至实时影像的机会 ,但与远程地点的真实交互还是离不开象机器人这样的智能设备 .Web技术与机器人控制技术的结合 ,促成了基于 web的远程控制机器人概念的诞生 .本文将就基于 web的远程控制机器人的发展历程、研究现状、主要技术与实现、发展趋势及应用前景等做综合的介绍 .
Resumo:
本文阐述了采用Internet/Intranet技术和利用ASP实现数据的动态发布技术以及基于分布网络环境下的异地设计与制造技术,设计了基于web的支持机器人异地设计制造的市场客户管理系统,从而探讨了Browser/Server结构的数据库发布系统的设计方法。
Resumo:
This thesis presents a learning based approach for detecting classes of objects and patterns with variable image appearance but highly predictable image boundaries. It consists of two parts. In part one, we introduce our object and pattern detection approach using a concrete human face detection example. The approach first builds a distribution-based model of the target pattern class in an appropriate feature space to describe the target's variable image appearance. It then learns from examples a similarity measure for matching new patterns against the distribution-based target model. The approach makes few assumptions about the target pattern class and should therefore be fairly general, as long as the target class has predictable image boundaries. Because our object and pattern detection approach is very much learning-based, how well a system eventually performs depends heavily on the quality of training examples it receives. The second part of this thesis looks at how one can select high quality examples for function approximation learning tasks. We propose an {em active learning} formulation for function approximation, and show for three specific approximation function classes, that the active example selection strategy learns its target with fewer data samples than random sampling. We then simplify the original active learning formulation, and show how it leads to a tractable example selection paradigm, suitable for use in many object and pattern detection problems.
Resumo:
M.H. Lee, Q. Meng and F. Chao, 'Staged Competence Learning in Developmental Robotics', Adaptive Behavior, 15(3), pp 241-255, 2007. the full text will be available in September 2008
Resumo:
Internet measurements show that the size distribution of Web-based transactions is usually very skewed; a few large requests constitute most of the total traffic. Motivated by the advantages of scheduling algorithms which favor short jobs, we propose to perform differentiated control over Web-based transactions to give preferential service to short web requests. The control is realized through service semantics provided by Internet Traffic Managers, a Diffserv-like architecture. To evaluate the performance of such a control system, it is necessary to have a fast but accurate analytical method. To this end, we model the Internet as a time-shared system and propose a numerical approach which utilizes Kleinrock's conservation law to solve the model. The numerical results are shown to match well those obtained by packet-level simulation, which runs orders of magnitude slower than our numerical method.
Resumo:
OBJECTIVE: The Veterans Health Administration has developed My HealtheVet (MHV), a Web-based portal that links veterans to their care in the veteran affairs (VA) system. The objective of this study was to measure diabetic veterans' access to and use of the Internet, and their interest in using MHV to help manage their diabetes. MATERIALS AND METHODS: Cross-sectional mailed survey of 201 patients with type 2 diabetes and hemoglobin A(1c) > 8.0% receiving primary care at any of five primary care clinic sites affiliated with a VA tertiary care facility. Main measures included Internet usage, access, and attitudes; computer skills; interest in using the Internet; awareness of and attitudes toward MHV; demographics; and socioeconomic status. RESULTS: A majority of respondents reported having access to the Internet at home. Nearly half of all respondents had searched online for information about diabetes, including some who did not have home Internet access. More than a third obtained "some" or "a lot" of their health-related information online. Forty-one percent reported being "very interested" in using MHV to help track their home blood glucose readings, a third of whom did not have home Internet access. Factors associated with being "very interested" were as follows: having access to the Internet at home (p < 0.001), "a lot/some" trust in the Internet as a source of health information (p = 0.002), lower age (p = 0.03), and some college (p = 0.04). Neither race (p = 0.44) nor income (p = 0.25) was significantly associated with interest in MHV. CONCLUSIONS: This study found that a diverse sample of older VA patients with sub-optimally controlled diabetes had a level of familiarity with and access to the Internet comparable to an age-matched national sample. In addition, there was a high degree of interest in using the Internet to help manage their diabetes.
Resumo:
Currently, no available pathological or molecular measures of tumor angiogenesis predict response to antiangiogenic therapies used in clinical practice. Recognizing that tumor endothelial cells (EC) and EC activation and survival signaling are the direct targets of these therapies, we sought to develop an automated platform for quantifying activity of critical signaling pathways and other biological events in EC of patient tumors by histopathology. Computer image analysis of EC in highly heterogeneous human tumors by a statistical classifier trained using examples selected by human experts performed poorly due to subjectivity and selection bias. We hypothesized that the analysis can be optimized by a more active process to aid experts in identifying informative training examples. To test this hypothesis, we incorporated a novel active learning (AL) algorithm into FARSIGHT image analysis software that aids the expert by seeking out informative examples for the operator to label. The resulting FARSIGHT-AL system identified EC with specificity and sensitivity consistently greater than 0.9 and outperformed traditional supervised classification algorithms. The system modeled individual operator preferences and generated reproducible results. Using the results of EC classification, we also quantified proliferation (Ki67) and activity in important signal transduction pathways (MAP kinase, STAT3) in immunostained human clear cell renal cell carcinoma and other tumors. FARSIGHT-AL enables characterization of EC in conventionally preserved human tumors in a more automated process suitable for testing and validating in clinical trials. The results of our study support a unique opportunity for quantifying angiogenesis in a manner that can now be tested for its ability to identify novel predictive and response biomarkers.
Resumo:
PURPOSE: Risk-stratified guidelines can improve quality of care and cost-effectiveness, but their uptake in primary care has been limited. MeTree, a Web-based, patient-facing risk-assessment and clinical decision support tool, is designed to facilitate uptake of risk-stratified guidelines. METHODS: A hybrid implementation-effectiveness trial of three clinics (two intervention, one control). PARTICIPANTS: consentable nonadopted adults with upcoming appointments. PRIMARY OUTCOME: agreement between patient risk level and risk management for those meeting evidence-based criteria for increased-risk risk-management strategies (increased risk) and those who do not (average risk) before MeTree and after. MEASURES: chart abstraction was used to identify risk management related to colon, breast, and ovarian cancer, hereditary cancer, and thrombosis. RESULTS: Participants = 488, female = 284 (58.2%), white = 411 (85.7%), mean age = 58.7 (SD = 12.3). Agreement between risk management and risk level for all conditions for each participant, except for colon cancer, which was limited to those <50 years of age, was (i) 1.1% (N = 2/174) for the increased-risk group before MeTree and 16.1% (N = 28/174) after and (ii) 99.2% (N = 2,125/2,142) for the average-risk group before MeTree and 99.5% (N = 2,131/2,142) after. Of those receiving increased-risk risk-management strategies at baseline, 10.5% (N = 2/19) met criteria for increased risk. After MeTree, 80.7% (N = 46/57) met criteria. CONCLUSION: MeTree integration into primary care can improve uptake of risk-stratified guidelines and potentially reduce "overuse" and "underuse" of increased-risk services.Genet Med 18 10, 1020-1028.