944 resultados para vinyl sulfides
Resumo:
We present a detailed study on the preparation of compartmentalized cylindrical nanoparticles via a templated approach: the polybutadiene part of a linear polybutadiene-block-poly(2-vinyl pyridine)-block-poly(tert-butyl methacrylate) block terpolymer, B420V280T790, having a bulk microstructure with PB cylinders covered by a P2VP double helix and embedded in a PtBMA matrix was selectively crosslinked. Subsequent sonication-assisted dissolution and chemical modifications such as quaternization (P2VP to P2VPq) and ester hydrolysis (PtBMA to poly(sodium methacrylate), PMANa) resulted in core-crosslinked cylinders soluble in organic and aqueous media. Different amounts of crosslinker and the influence of the sonication treatment on size and shape of the cylindrical aggregates were investigated. The cylinders always exhibit a compartmentalized corona. Under certain conditions, in particular quaternization of P2VP in mixtures of THF and MeOH, the helical arrangement of the P2VPq shell could be preserved even in solution, whereas in most other cases randomly distributed P2VP/P2VPq patches were observed. In aqueous solution at high pH, intramicellar interpolyelectrolyte complex (im-IPEC) formation occurred between the positively charged P2VPq shell and the negatively charged PMANa corona. We further show that different noble metal nanoparticles can be generated either selectively within the im-IPEC compartments (Pd) or randomly distributed among shell and corona of the cylinders (Au and Pt).
Resumo:
A range of arylgold compounds have been synthesized and investigated as single-component catalysts for the hydrophenoxylation of unactivated internal alkynes. Both carbene and phosphine-ligated compounds were screened as part of this work, and the most efficient catalysts contained either JohnPhos or IPr/SIPr. Phenols bearing either electron-withdrawing or electron-donating groups were efficiently added using these catalysts. No silver salts, acids, or solvents were needed for the catalysis, and either microwave or conventional heating afforded moderate to excellent yields of the vinyl ethers.
Resumo:
We report molybdenum isotope compositions and concentrations in water samples from a variety of river catchment profiles in order to investigate the influence of anthropogenic contamination, catchment geology, within-river precipitation, and seasonal river flow variations on riverine molybdenum. Our results show that the observed variations in δ98/95Mo from 0‰ to 1.9‰ are primarily controlled by catchment lithology, particularly by weathering of sulfates and sulfides. Erosion in catchments dominated by wet-based glaciers leads to very high dissolved molybdenum concentrations. In contrast, anthropogenic inputs affect neither the concentration nor the isotopic composition of dissolved molybdenum in the rivers studied here. Seasonal variations are also quite muted. The finding that catchment geology exerts the primary control on the delivery of molybdenum to seawater indicates that the flux and isotope composition of molybdenum to seawater has likely varied in the geologic past.
Resumo:
Towards the goal of investigating the possible Twisted Intramolecular Charge Transfer (TICT) state mechanism of fluorescence emission, two aromatic dicyanovinyl compounds, 2-(naphthalene-2-ylmethylene) malononitrile (DCN) and a rigidified analogue, 3,4-dihydrophenanthren-1(2H)-ylidene)malononitrile (RDCN) were synthesized and their absorption and steady-state fluorescence emission spectra characterized. The spectral characterization was divided into two studies: first, DCN and RDCN were characterized in liquid solvents of increasing polarity; second, DCN and RDCN were characterized in viscous solvents and rigid glass media. The absorption spectra for both DCN and RDCN in all solvents demonstrated little to no solvatochromism. Emission results for DCN and RDCN in liquid solvents of increasing polarity showed DCN possessing strong solvatochromism while RDCN showed much less solvatochromism. Using the Lippert-Mataga equation, the difference between the ground and excited state dipole moment for DCN was estimated to be 8.4 + 0.4 Debye and between ~3.0 to 5.0 Debye for RDCN. Quantum yield measurements for DCN and RDCN in hexane, diethyl ether and acetonitrile were less than 0.01 and independent of polarity for both both solvents, with DCN generally possessing a quantum yield 3-4 times greater than RDCN. Experiments in glass media for DCN and RDCN showed a lessening of their solvatochromic character in both polar and non-polar glasses. These data provide strong evidence for a link between molecular flexibility and solvatochromism. However, while these data are consistent with a TICT state hypothesis for the emission mechanism, an alternative mechanism proposed by Maroncelli et al.10 involving rotation about the dicyanovinyl double bond in the excited state remains a possibility as well.
Resumo:
Wood plastic composites (WPCs) have gained popularity as building materials because of their usefulness in replacing solid wood in a variety of applications. These composites are promoted as being low-maintenance, high-durability products. However, it has been shown that WPCs exposed to weathering may experience a color change and/or loss in mechanical properties. An important requirement for building materials used in outdoor applications is the retention of their aesthetic qualities and mechanical properties during service life. Therefore, it is critical to understand the photodegradation mechanisms of WPCs exposed to UV radiation and to develop approaches to stabilize these composites (both unstabilized and stabilized) as well as the effect of weathering on the color fade and the retention of mechanical properties were characterized. Since different methods of manufacturing WPCs lead to different surface characteristics, which can influence weathering, the effect of manufacturing method on the photodegradation of WPCs was investigated first. Wood flour (WF) filled high-density polyethylene (HDPE) composite samples were either injection molded, extruded, or extruded and then planed. Fourier transform infrared (FTIR) spectroscopy was used to monitor the surface chemistry of the manufactured composites. The spectra showed that the surface of planed samples had more wood component than extruded and injection molded samples, respectively. After weathering, the samples were analyzed for color fade, and loss of flexural properties. The final lightness of the composites was not dependent upon the manufacturing method. However the mechanical property loss was dependent upon manufacturing method. The samples with more wood component at the surface (planed samples) experienced a larger percentage of total loss in flexural properties after weathering due to a greater effect of moisture on the samples. The change in surface chemistry of HDPE and WF/HDPE composites after weathering was studied using spectroscopic techniques. X-ray photoelectron spectroscopy (XPS) was used to characterize the occurrence of surface oxidation whereas FTIR spectroscopy was used to monitor the development of degradation products, such as carbonyl groups and vinyl groups, and to determine changes in HDPE crystallinity. Surface oxidation occurred immediately after exposure for both the neat HDPE and WF/HDPE composites. After weathering, the surface of the WF/HDPE composites was oxidized to a greater extent than the neat HDPE after weathering. This suggests that photodegradation is exacerbated by the addition of the carbonyl functional groups of the wood fibers within the HDPE atrix during composite manufacturing. While neat HDPE may undergo cross-linking in the initial stages of accelerated weathering, the WF may physically hinder the ability of the HDPE to cross-link resulting in the potential for HDPE chain scission to dominate in the initial weathering stages of the WF/HDPE composites. To determine which photostabilizers are most effective for WF/HDPE composites, factorial experimental designes were used to determine the effects of adding two hindered amine light stabilizers, an ultraviolet absorber, and a pigment on the color made and mechanical properties of both unweathered and UV weathered samples. Both the pigment and ultraviolet absorber were more effective photostabilizers for WF/HDPE composites than hinder amine light stabilizers. The ineffectiveness of hindered amine light stabilizers in protecting WPCs against UV radiation was attribuated to the acid/base reactions occurring between the WF and hindered amine light stabilizer. The efficiency of an ultraviolet absorber and/or pigment was also examined by incorporating different concentration of an ultraviolet absorber and/or pigment into WF/HDPE composites. Color change and flexural properties were determined after accelerated UV weathering. The lightness of the composite after weathering was influenced by the concentration of both the ultraviolet absorber by masking the bleaching wood component as well as blocking UV light. Flexural MOE loss was influenced by an increase in ultraviolet absorber concentration, but increasing pigment concentration from 1 to 2% had little influence on MOE loss. However, increasing both ultraviolet absorber and pigment concentration resulted in improved strength properties over the unstabilized composites after 3000 h of weather. Finally, the change in surface chemistry due to weathering of WF/HDPE composites that were either unstabilized or stabilized with an ultraviolet absorber and/or pigment was analyzed using FTIR spectroscopy. The samples were tested for loss in modulus of elasticity, carbonyl and vinyl group formation at the surface, and change in HDPE crystallinity. It was concluded that structural changes in the samples; carbonyl group formation, terminal vinyl group formation, and crystallinity changes cannot reliably be used to predict changes in modulus of elasticity using a simple linear relationship. The effect of cross-linking, chain scission, and crystallinity changes due to ultraviolet exposure as well as the interfacial degradation due to moisture exposure are inter-related factors when weathering HDPE and WF/HDPE composites.
Resumo:
In the literature, some transition metal salts have been used as soft Lewis acids to activate alkynes toward nucleophilic attack. For example, Pt(II), Au(I) and Pd(II) catalysts can catalyze cycloisomerization reactions of alkynyl compounds to give a variety of cyclic products. In order to expand the scope of these reactions, in chapter 2 of this dissertation, several alkynyl epoxides were isomerized to cyclic allyl vinyl ethers using PtCl2 as the catalyst. Three of these allyl vinyl ethers were hydrolyzed to 2-hydroxymorpholine derivatives and two were converted to piperidine derivatives by thermal Claisen rearrangement. In order to find more benign and inexpensive catalysts for these types of reactions, in chapter 3 of this dissertation, BiCl3 was used to catalyze the isomerization of eight enynes to pyrrolidine derivatives. This reaction was normally catalyzed by expensive noble metal catalysts, such as Pd(II), Pt(II) and Au(I). All the cyclic products are valuable intermediates in the synthesis of bioactive molecules, these soft Lewis acid catalyzed cycloisomerization may find applications in the synthesis of bioactive molecules.
Resumo:
Deposits of sulfides, containing nickel and copper with associated platineferous minerals occur in the Stillwater Igneous Complex. This is a group of unusual igneous rocks situated in Stillwater and Sweetgrass counties in Montana.
Resumo:
Reaction of 3-methyl-2-phenylpyrrocoline(I) and dimethyl acetylenedicarboxylate(II) in refluxing toluene furnishes cis-7',8-dihydro.4,5,8,9-tetramethoxycarbonyl-7'-phenyl-7' -methylazocino(2,1,8-cd]pyrrolizine (III) and trans-7',8-dihydro-4,5,8,9-tetramethoxycarbonyl-7-phenyl-7'-methylazocino[2,1,8-cd]pyrrolizine (IV), while the same reaction at ambient temperature yields 1-[(1,2-trans-dimethoxycarbonyl)vinyl]-3-methyl-2-phenylpyrrocoline (V) and 1-[(1,2-cis-di(methoxycarbonyl)vinyl)--methyl-2- phenylpyirocoUne (V) and 1-[(I,2-cis-di(methoxycarbonyl)Yinyl]-3-metbyl-2-phenylpyrrocoline(VI) as the major products. The structure of IV has been determined by X-ray crystallography.A possible mechanism of formation of these products is also discussed.
Resumo:
The stereoselective syntheses of 7,8,9-trideoxypeloruside A (4) and a monocyclic peloruside A analogue lacking the entire tetrahydropyran moiety (3) are described. The syntheses proceeded through the PMB-ether of an ω-hydroxy β-keto aldehyde as a common intermediate which was elaborated into a pair of diastereomeric 1,3-syn and -anti diols by stereoselective Duthaler–Hafner allylations and subsequent 1,3-syn or anti reduction. One of these isomers was further converted into a tetrahydropyran derivative in a high-yielding Prins reaction, to provide the precursor for bicyclic analogue 4. Downstream steps for both syntheses included the substrate-controlled addition of a vinyl lithium intermediate to an aldehyde, thus connecting the peloruside side chain to C15 (C13) of the macrocyclic core structure in a fully stereoselective fashion. In the case of monocyclic 3 macrocyclization was based on ring-closing olefin metathesis (RCM), while bicyclic 4 was cyclized through Yamaguchi-type macrolactonization. The macrolactonization step was surprisingly difficult and was accompanied by extensive cyclic dimer formation. Peloruside A analogues 3 and 4 inhibited the proliferation of human cancer cell lines in vitro with micromolar and sub-micromolar IC50 values, respectively. The higher potency of 4 highlights the importance of the bicyclic core structure of peloruside A for nM biological activity.
Resumo:
The gerbil model of ischemia was used to determine the effect of carotid occlusion on energy metabolites in cellular layers of discrete regions of the hippocampus and dentate gyrus. Levels of glucose, glycogen, ATP and phosphocreatine (PCr) were unchanged after 1 minute of ischemia. However, 3 minutes of ischemia produced a dramatic decrease in net levels of all metabolites. No additional decrease was observed after 15 minutes of ischemia. Re-establishment of the blood flow for 5 minutes after a 15 minute ischemic episode returned all metabolites to pre-ischemia levels. Concentrations of glucose and glycogen were elevated in sham-operated animals as a function of the pentobarbital anesthetic employed. In other studies, elevated GABA levels (produced by inhibiting GABA-transaminase with (gamma)-vinyl-GABA (GVG)) were found to decrease the rate of utilization of the high-energy phosphate metabolites ATP and PCr in the mouse cortex. In addition, glucose and glycogen levels were increased. Thus, tonic inhibition by GABA produced decreased cellular activity. Additional experiments demonstrated the attenuation of ischemia-induced metabolite depletion in cellular layers of regions of the hippocampus, dentate gyrus and cortex after GVG administration. Under ether, 1 minute of bilateral carotid occlusion produced a dramatic decrease in metabolite levels. After GVG treatment, the decrease was blocked completely for glucose, glycogen and ATP, and partially for PCr. Therefore, GABA-transaminase inhibition produced increased levels of GABA which subsequently decreased cellular activity. The protection against ischemia may have been due to (a)decreased metabolic rate; the available energy stores were utilized at a slower rate, and (b)increased levels of energy substrates; additional supplies available to maintain viability. These data suggest that the functional state of neural tissue can determine the response to metabolic stress. ^
Resumo:
Acoustic backscatter contrast in depositional sediments under salmon farm cages in the Bay of Fundy, Canada, was correlated with localized changes in (unknown) sediment geotechnical properties, as indicated by 4 independent measures of organic enrichment. Sediment total sulfides and redox potentials, enzyme hydrolyzable amino acids, sediment profile imaging and macrofaunal samples, taken at mid-cage positions, each rejected the null hypothesis that salmon cage footprints, defined acoustically as high backscatter areas, were indistinguishable from nearby reference areas. Acoustic backscatter imaging appears capable of mapping organic enrichment in depositional sediments caused by excessive inputs of salmon farm wastes associated with intensive aquaculture.
Resumo:
The Yanque nonsulfide Pb-Zn deposit (inferred resources 12.5 Mt @ 3.7% Pb and @ 3.5% Zn) is located in the Andahuaylas-Yauri ore province (Cuzco, southern Peru). The deposit occurs within a base metal mineralized district, centered on the medium-sized Dolores porphyry copper. A thorough geological, mineralogical and geochemical study has carried out in order to define: the relationships between the Dolores Cu-porphyry ore and the Yanque Zn-Pb polymetallic mineralization, and the characteristics of the economic nonsulfide concentrations. Both sedimentary and igneous rocks constitute the backbone of the Yanque-Dolores area. The sedimentary lithologies belong to the Soraya, Mara and Ferrobamba Fms. (upper Jurassic-middle Cretaceous). The Yanque orebody is hosted by the Mara Fm., which prevailingly consists of a siliciclastic sedimentary breccia. The original sulfide mineralization consisted of galena, pyrite and sphalerite. The host rock has been affected by a strong hydrothermal alteration, characterized by prevailing sericite/illite, as in the typical porphyry-related phyllic-argillic alteration stage, and by minor kaolinite, dolomite and quartz. Minor element geochemistry, characterized by Sb, As, Mn, Ag and locally also by Cu, points to magmatic-hydrothermal related mineralizing fluids. The Pb isotopic compositions from Dolores and Yanque sulfides are similar, and are typical of the Tertiary magmatically-derived ores in this part of Peru. The hydrothermally altered rocks at Yanque have the same Pb isotopic compositions as the sulfides, thus confirming the hypothesis that the Yanque primary Zn-Pb mineralization may have been produced by hydrothermal circulation related to the emplacement of the Dolores Cu-porphyry, as it is the case of other porphyry Cu systems associated with polymetallic mineralization elsewhere. However, no simple genetic model for the mineralization involving just one fluid circulation episode is able to explain the data. The Yanque economic nonsulfide ore association consists of sauconite, hemimorphite, smithsonite and cerussite, which result from the weathering and alteration of the original sulfide mineralization. Zinc is allocated mainly in sauconite (Zn-smectite), rather than in carbonates: a factor strictly related to the prevailing siliciclastic character of the host rock. Distinctive features of the Yanque orebody are the comparable ore grades for both Pb and Zn (3.5% Zn and 3.7% Pb), and the inverse supergene chemical zoning. In fact, contrary to other supergene ores of this type, zinc prevails in the top zone of the Yanque deposit, whereas lead content increases with depth. Considering the different mobility of the two metals in solution, it may be assumed that most of the primary zinc that was the source for the Yanque nonsulfides was originally located far from the position occupied by the galena mineralization, whose remnants have been observed on site. Zinc sulfides may have been originally contained in the eroded rock volumes that surrounded the actual deposit: the zinc-rich solutions have possibly migrated through the siliciclastic Mara Fm. and precipitated the nonsulfide minerals by porosity filling and replacement processes. In this sense, the Yanque secondary Zn-Pb deposit could be considered as a special type of “Exotic” mineralization.
Resumo:
In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo- and hetero-functional fluorescence-encoded gold nanoparticles (Au-NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)-based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV-Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence-activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero-functionalized Au-NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties.
Resumo:
Tishomingo is a chemically and structurally unique iron with 32.5 wt.% Ni that contains 20% residual taenite and 80% martensite plates, which formed on cooling to between -75 and -200 °C, probably the lowest temperature recorded by any meteorite. Our studies using transmission (TEM) and scanning electron microscopy (SEM), X-ray microanalysis (AEM) and electron backscatter diffraction (EBSD) show that martensite plates in Tishomingo formed in a single crystal of taenite and decomposed during reheating forming 10-100 nm taenite particles with ∼50 wt.% Ni, kamacite with ∼4 wt.%Ni, along with martensite or taenite with 32 wt.% Ni. EBSD data and experimental constraints show that Tishomingo was reheated to 320-400 °C for about a year transforming some martensite to kamacite and to taenite particles and some martensite directly to taenite without composition change. Fizzy-textured intergrowths of troilite, kamacite with 2.7 wt.% Ni and 2.6 wt.% Co, and taenite with 56 wt.% Ni and 0.15 wt.% Co formed by localized shock melting. A single impact probably melted the sub-mm sulfides, formed stishovite, and reheated and decomposed the martensite plates. Tishomingo and its near-twin Willow Grove, which has 28 wt.% Ni, differ from IAB-related irons like Santa Catharina and San Cristobal that contain 25-36 wt.% Ni, as they are highly depleted in moderately volatile siderophiles and enriched in Ir and other refractory elements. Tishomingo and Willow Grove therefore resemble IVB irons but are chemically distinct. The absence of cloudy taenite in these two irons shows that they cooled through 250 °C abnormally fast at >0.01 °C/yr. Thus this grouplet, like the IVA and IVB irons, suffered an early impact that disrupted their parent body when it was still hot. Our noble gas data show that Tishomingo was excavated from its parent body about 100 to 200 Myr ago and exposed to cosmic rays as a meteoroid with a radius of ∼50-85 cm.
Resumo:
PURPOSE The study aims to evaluate three-dimensionally (3D) the accuracy of implant impressions using a new resin splinting material, "Smart Dentin Replacement" (SDR). MATERIALS AND METHODS A titanium model of an edentulous mandible with six implant analogues was used as a master model and its dimensions measured with a coordinate measuring machine. Before the total 60 impressions were taken (open tray, screw-retained abutments, vinyl polysiloxane), they were divided in four groups: A (test): copings pick-up splinted with dental floss and fotopolymerizing SDR; B (test): see A, additionally sectioned and splinted again with SDR; C (control): copings pick-up splinted with dental floss and autopolymerizing Duralay® (Reliance Dental Mfg. Co., Alsip, IL, USA) acrylic resin; and D (control): see C, additionally sectioned and splinted again with Duralay. The impressions were measured directly with an optomechanical coordinate measuring machine and analyzed with a computer-aided design (CAD) geometric modeling software. The Wilcoxon matched-pair signed-rank test was used to compare groups. RESULTS While there was no difference (p = .430) between the mean 3D deviations of the test groups A (17.5 μm) and B (17.4 μm), they both showed statistically significant differences (p < .003) compared with both control groups (C 25.0 μm, D 19.1 μm). CONCLUSIONS Conventional impression techniques for edentulous jaws with multiple implants are highly accurate using the new fotopolymerizing splinting material SDR. Sectioning and rejoining of the SDR splinting had no impact on the impression accuracy.