897 resultados para staircase approximation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central aim for the research undertaken in this PhD thesis is the development of a model for simulating water droplet movement on a leaf surface and to compare the model behavior with experimental observations. A series of five papers has been presented to explain systematically the way in which this droplet modelling work has been realised. Knowing the path of the droplet on the leaf surface is important for understanding how a droplet of water, pesticide, or nutrient will be absorbed through the leaf surface. An important aspect of the research is the generation of a leaf surface representation that acts as the foundation of the droplet model. Initially a laser scanner is used to capture the surface characteristics for two types of leaves in the form of a large scattered data set. After the identification of the leaf surface boundary, a set of internal points is chosen over which a triangulation of the surface is constructed. We present a novel hybrid approach for leaf surface fitting on this triangulation that combines Clough-Tocher (CT) and radial basis function (RBF) methods to achieve a surface with a continuously turning normal. The accuracy of the hybrid technique is assessed using numerical experimentation. The hybrid CT-RBF method is shown to give good representations of Frangipani and Anthurium leaves. Such leaf models facilitate an understanding of plant development and permit the modelling of the interaction of plants with their environment. The motion of a droplet traversing this virtual leaf surface is affected by various forces including gravity, friction and resistance between the surface and the droplet. The innovation of our model is the use of thin-film theory in the context of droplet movement to determine the thickness of the droplet as it moves on the surface. Experimental verification shows that the droplet model captures reality quite well and produces realistic droplet motion on the leaf surface. Most importantly, we observed that the simulated droplet motion follows the contours of the surface and spreads as a thin film. In the future, the model may be applied to determine the path of a droplet of pesticide along a leaf surface before it falls from or comes to a standstill on the surface. It will also be used to study the paths of many droplets of water or pesticide moving and colliding on the surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and Gr¨unwald-Letnikov(GL) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes the use of the Bayes Factor to replace the Bayesian Information Criterion (BIC) as a criterion for speaker clustering within a speaker diarization system. The BIC is one of the most popular decision criteria used in speaker diarization systems today. However, it will be shown in this paper that the BIC is only an approximation to the Bayes factor of marginal likelihoods of the data given each hypothesis. This paper uses the Bayes factor directly as a decision criterion for speaker clustering, thus removing the error introduced by the BIC approximation. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, leading to a 14.7% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the suggestion that Markov switching (MS) models should be used to determine cyclical turning points. A Kalman filter approximation is used to derive the dating rules implicit in such models. We compare these with dating rules in an algorithm that provides a good approximation to the chronology determined by the NBER. We find that there is very little that is attractive in the MS approach when compared with this algorithm. The most important difference relates to robustness. The MS approach depends on the validity of that statistical model. Our approach is valid in a wider range of circumstances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the paper, the flow-shop scheduling problem with parallel machines at each stage (machine center) is studied. For each job its release and due date as well as a processing time for its each operation are given. The scheduling criterion consists of three parts: the total weighted earliness, the total weighted tardiness and the total weighted waiting time. The criterion takes into account the costs of storing semi-manufactured products in the course of production and ready-made products as well as penalties for not meeting the deadlines stated in the conditions of the contract with customer. To solve the problem, three constructive algorithms and three metaheuristics (based one Tabu Search and Simulated Annealing techniques) are developed and experimentally analyzed. All the proposed algorithms operate on the notion of so-called operation processing order, i.e. the order of operations on each machine. We show that the problem of schedule construction on the base of a given operation processing order can be reduced to the linear programming task. We also propose some approximation algorithm for schedule construction and show the conditions of its optimality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wide-angle images exhibit significant distortion for which existing scale-space detectors such as the scale-invariant feature transform (SIFT) are inappropriate. The required scale-space images for feature detection are correctly obtained through the convolution of the image, mapped to the sphere, with the spherical Gaussian. A new visual key-point detector, based on this principle, is developed and several computational approaches to the convolution are investigated in both the spatial and frequency domain. In particular, a close approximation is developed that has comparable computation time to conventional SIFT but with improved matching performance. Results are presented for monocular wide-angle outdoor image sequences obtained using fisheye and equiangular catadioptric cameras. We evaluate the overall matching performance (recall versus 1-precision) of these methods compared to conventional SIFT. We also demonstrate the use of the technique for variable frame-rate visual odometry and its application to place recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the past three decades, the subject of fractional calculus (that is, calculus of integrals and derivatives of arbitrary order) has gained considerable popularity and importance, mainly due to its demonstrated applications in numerous diverse and widespread fields in science and engineering. For example, fractional calculus has been successfully applied to problems in system biology, physics, chemistry and biochemistry, hydrology, medicine, and finance. In many cases these new fractional-order models are more adequate than the previously used integer-order models, because fractional derivatives and integrals enable the description of the memory and hereditary properties inherent in various materials and processes that are governed by anomalous diffusion. Hence, there is a growing need to find the solution behaviour of these fractional differential equations. However, the analytic solutions of most fractional differential equations generally cannot be obtained. As a consequence, approximate and numerical techniques are playing an important role in identifying the solution behaviour of such fractional equations and exploring their applications. The main objective of this thesis is to develop new effective numerical methods and supporting analysis, based on the finite difference and finite element methods, for solving time, space and time-space fractional dynamical systems involving fractional derivatives in one and two spatial dimensions. A series of five published papers and one manuscript in preparation will be presented on the solution of the space fractional diffusion equation, space fractional advectiondispersion equation, time and space fractional diffusion equation, time and space fractional Fokker-Planck equation with a linear or non-linear source term, and fractional cable equation involving two time fractional derivatives, respectively. One important contribution of this thesis is the demonstration of how to choose different approximation techniques for different fractional derivatives. Special attention has been paid to the Riesz space fractional derivative, due to its important application in the field of groundwater flow, system biology and finance. We present three numerical methods to approximate the Riesz space fractional derivative, namely the L1/ L2-approximation method, the standard/shifted Gr¨unwald method, and the matrix transform method (MTM). The first two methods are based on the finite difference method, while the MTM allows discretisation in space using either the finite difference or finite element methods. Furthermore, we prove the equivalence of the Riesz fractional derivative and the fractional Laplacian operator under homogeneous Dirichlet boundary conditions – a result that had not previously been established. This result justifies the aforementioned use of the MTM to approximate the Riesz fractional derivative. After spatial discretisation, the time-space fractional partial differential equation is transformed into a system of fractional-in-time differential equations. We then investigate numerical methods to handle time fractional derivatives, be they Caputo type or Riemann-Liouville type. This leads to new methods utilising either finite difference strategies or the Laplace transform method for advancing the solution in time. The stability and convergence of our proposed numerical methods are also investigated. Numerical experiments are carried out in support of our theoretical analysis. We also emphasise that the numerical methods we develop are applicable for many other types of fractional partial differential equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents an original approach to parametric speech coding at rates below 1 kbitsjsec, primarily for speech storage applications. Essential processes considered in this research encompass efficient characterization of evolutionary configuration of vocal tract to follow phonemic features with high fidelity, representation of speech excitation using minimal parameters with minor degradation in naturalness of synthesized speech, and finally, quantization of resulting parameters at the nominated rates. For encoding speech spectral features, a new method relying on Temporal Decomposition (TD) is developed which efficiently compresses spectral information through interpolation between most steady points over time trajectories of spectral parameters using a new basis function. The compression ratio provided by the method is independent of the updating rate of the feature vectors, hence allows high resolution in tracking significant temporal variations of speech formants with no effect on the spectral data rate. Accordingly, regardless of the quantization technique employed, the method yields a high compression ratio without sacrificing speech intelligibility. Several new techniques for improving performance of the interpolation of spectral parameters through phonetically-based analysis are proposed and implemented in this research, comprising event approximated TD, near-optimal shaping event approximating functions, efficient speech parametrization for TD on the basis of an extensive investigation originally reported in this thesis, and a hierarchical error minimization algorithm for decomposition of feature parameters which significantly reduces the complexity of the interpolation process. Speech excitation in this work is characterized based on a novel Multi-Band Excitation paradigm which accurately determines the harmonic structure in the LPC (linear predictive coding) residual spectra, within individual bands, using the concept 11 of Instantaneous Frequency (IF) estimation in frequency domain. The model yields aneffective two-band approximation to excitation and computes pitch and voicing with high accuracy as well. New methods for interpolative coding of pitch and gain contours are also developed in this thesis. For pitch, relying on the correlation between phonetic evolution and pitch variations during voiced speech segments, TD is employed to interpolate the pitch contour between critical points introduced by event centroids. This compresses pitch contour in the ratio of about 1/10 with negligible error. To approximate gain contour, a set of uniformly-distributed Gaussian event-like functions is used which reduces the amount of gain information to about 1/6 with acceptable accuracy. The thesis also addresses a new quantization method applied to spectral features on the basis of statistical properties and spectral sensitivity of spectral parameters extracted from TD-based analysis. The experimental results show that good quality speech, comparable to that of conventional coders at rates over 2 kbits/sec, can be achieved at rates 650-990 bits/sec.