954 resultados para skimming flows
Resumo:
Recent developments have made researchers to reconsider Lagrangian measurement techniques as an alternative to their Eulerian counterpart when investigating non-stationary flows. This thesis advances the state-of-the-art of Lagrangian measurement techniques by pursuing three different objectives: (i) developing new Lagrangian measurement techniques for difficult-to-measure, in situ flow environments; (ii) developing new post-processing strategies designed for unstructured Lagrangian data, as well as providing guidelines towards their use; and (iii) presenting the advantages that the Lagrangian framework has over their Eulerian counterpart in various non-stationary flow problems. Towards the first objective, a large-scale particle tracking velocimetry apparatus is designed for atmospheric surface layer measurements. Towards the second objective, two techniques, one for identifying Lagrangian Coherent Structures (LCS) and the other for characterizing entrainment directly from unstructured Lagrangian data, are developed. Finally, towards the third objective, the advantages of Lagrangian-based measurements are showcased in two unsteady flow problems: the atmospheric surface layer, and entrainment in a non-stationary turbulent flow. Through developing new experimental and post-processing strategies for Lagrangian data, and through showcasing the advantages of Lagrangian data in various non-stationary flows, the thesis works to help investigators to more easily adopt Lagrangian-based measurement techniques.
Resumo:
This research was conducted to investigate the management of knowledge flows in a Mauritian multinational organisation. A case study research method was used to gather data which was analysed using the SECI model. Results show that all the four quadrants of this model were applied by the conglomerate in transferring knowledge to its newly acquired manufacturing operations in Madagascar. This paper discusses some of the knowledge management strategies employed.
Resumo:
Performance testing methods of boilers in transient operating conditions (start, stop and combustion power modulation sequences) need the combustion rate quantified to allow for the emissions to be quantified. One way of quantifying the combustion rate of a boiler during transient operating conditions is by measuring the flue gas flow rate. The flow conditions in chimneys of single family house boilers pose a challenge however, mainly because of the low flow velocity. The main objectives of the work were to characterize the flow conditions in residential chimneys, to evaluate the use of the Pitot-static method and the averaging Pitot method, and to develop and test a calibration method for averaging Pitot probes for low
Resumo:
Due to increased interest in miniaturization, great attention has been given in the recent decade to the micro heat exchanging systems. Literature survey suggests that there is still a limited understanding of gas flows in micro heat exchanging systems. The aim of the current thesis is to further the understanding of fluid flow and heat transfer phenomenon inside such geometries when a compressible working fluid is utilized. A combined experimental and numerical approach has been utilized in order to overcome the lack of employable sensors for micro dimensional channels. After conducting a detailed comparison between various data reduction methodologies employed in the literature, the best suited methodology for gas microflow experimentalists is proposed. A transitional turbulence model is extensively validated against the experimental results of the microtubes and microchannels under adiabatic wall conditions. Heat transfer analysis of single microtubes showed that when the compressible working fluid is used, Nusselt number results are in partial disagreement with the conventional theory at highly turbulent flow regime for microtubes having a hydraulic diameter less than 250 microns. Experimental and numerical analysis on a prototype double layer microchannel heat exchanger showed that compressibility is detrimental to the thermal performance. It has been found that compressibility effects for micro heat exchangers are significant when the average Mach number at the outlet of the microchannel is greater than 0.1 compared to the adiabatic limit of 0.3. Lastly, to avoid a staggering amount of the computational power needed to simulate the micro heat exchanging systems with hundreds of microchannels, a reduced order model based on the porous medium has been developed that considers the compressibility of the gas inside microchannels. The validation of the proposed model against experimental results of average thermal effectiveness and the pressure loss showed an excellent match between the two.
Resumo:
The main purpose of this work is to develop a numerical platform for the turbulence modeling and optimal control of liquid metal flows. Thanks to their interesting thermal properties, liquid metals are widely studied as coolants for heat transfer applications in the nuclear context. However, due to their low Prandtl numbers, the standard turbulence models commonly used for coolants as air or water are inadequate. Advanced turbulence models able to capture the anisotropy in the flow and heat transfer are then necessary. In this thesis, a new anisotropic four-parameter turbulence model is presented and validated. The proposed model is based on explicit algebraic models and solves four additional transport equations for dynamical and thermal turbulent variables. For the validation of the model, several flow configurations are considered for different Reynolds and Prandtl numbers, namely fully developed flows in a plane channel and cylindrical pipe, and forced and mixed convection in a backward-facing step geometry. Since buoyancy effects cannot be neglected in liquid metals-cooled fast reactors, the second aim of this work is to provide mathematical and numerical tools for the simulation and optimization of liquid metals in mixed and natural convection. Optimal control problems for turbulent buoyant flows are studied and analyzed with the Lagrange multipliers method. Numerical algorithms for optimal control problems are integrated into the numerical platform and several simulations are performed to show the robustness, consistency, and feasibility of the method.
Resumo:
By investigating the inner working of leading financial institutions, and their dense interconnections, this thesis explores the evolution of traditional financial instruments like bonds to tackle sustainability issues. Building on fieldwork among green financiers, the thesis is based upon participant observation of working groups appointed to define standards for sustainable bonds. Engaging critical theory, one claim is that investors are increasingly recruited or interpellated by an emerging global green ideological apparatus, aimed at ensuring the reproduction of existing social relations. Taking stock of the proliferation of both public and private actors in the definition of green standards and practices, the thesis proposes that this green ideology is becoming hegemonic. Focusing on the case of green bond pricing, it suggests that environmental and climate labels and other financial green signifiers for financial products take on brand-like qualities. Crystallizing imaginaries, meanings, and forms of personhood, they play a fundamental role in what is defined as a dual process of valuation-cum-subjectivation. Identifying themselves as “green”, financiers valuate differently green and brown assets allowing a ‘green’ financial value to slowly come to matter. Yet, alongside their ideological role, green labels have come to be almost exclusively standardized with reference to specific Climate Scenarios (e.g. Net Zero). These scenarios coordinate the optimal path towards achieving a carbon neutral world and represent the quintessential example of socioeconomic planning, crucially undermining neoliberal ideas of ‘the market’ as the ultimate calculative device.
Resumo:
This article is part of a study considering the growing importance of the international transit of people, knowledge, and practices in the schooling and professional education processes of some social segments. Considering the public funds made available by the Coordination for the Improvement of Higher Education Personnel - Capes -, the National Council for Scientific and Technological Development - CNPq - and the State of São Paulo Research Foundation - Fapesp - to support researchers' fellowships abroad, aming to improve research and investments on Science and Technology on the context of international exchanges, we have dedicated this article to the preliminary description and analysis of the database of fellows funded abroad by these research agencies from 1970 to 2000. The movement of flows based on the quantitative methodology of the correlation of variables draws the trends of international academic exchange programs in the three research institutions and in the different areas of knowledge, and we intend to analyse them taking into account the scientific and technological development policies adopted by Brazilian State on the period.
Resumo:
In this work the performance of a sugar cane chopped harvester was analysed when fed with two sugar cane mass flows, measuring the invisible losses, which are impossible to measure in the field, harvester sugar cane cleaning efficiency and air velocity on extractors exit. The trial was done under controlled conditions at Copersucar Technology Center in January 2000. The results showed that the flow of sugar cane through the harvester doesn't influence the magnitudes of total invisible losses and raw material cleaning efficiency. The mean air velocity on the primary extractors exit was 12.0 m s-1, and 9.2 m s-1 on the secondary extractor, with a coefficient of variation of 21%, indicating that the poor cleaning performance of the harvester could be related to air velocity difference inside the extractor. Analyzing the data collected in the trials, it was possible to conclude that invisible losses in sugar cane harvester were 10% and the cleaning efficiency was 87%.
Resumo:
Relief influences soil texture variability, since it contributes to the time of exposition of the materials to weathering factors. Our work was carried out in the city of Gavião Peixoto (SP), with the objective of characterizing the spatial variability of texture of a dystrophic Red Latosol cultivated with citrus. The hillside was divided into three segments: top, stocking lean and inferior lean. Soil samples were collected in a grid with regular intervals of 50 m, at the depths of 0.0-0.2 m and 0.6-0.8 m, comprising a total of 332 points in an area of 83.5 ha. The data were submitted to descriptive and geostatistics analyses (semivariogram modeling and kriging maps). The spatial behavior of the texture of oxisols is directly related to the relief forms in this study, which controls the direction of surface and subsurface water flows. The concept of homogeneity of clay distribution in the Oxisol profile is a piece of information that can be adjusted by knowing the spatial pattern of this distribution in different relief forms.
Resumo:
In this paper, space adaptivity is introduced to control the error in the numerical solution of hyperbolic systems of conservation laws. The reference numerical scheme is a new version of the discontinuous Galerkin method, which uses an implicit diffusive term in the direction of the streamlines, for stability purposes. The decision whether to refine or to unrefine the grid in a certain location is taken according to the magnitude of wavelet coefficients, which are indicators of local smoothness of the numerical solution. Numerical solutions of the nonlinear Euler equations illustrate the efficiency of the method. © Springer 2005.
Resumo:
The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.
Resumo:
OBJETIVOS: Descrever as características clínicas e laboratoriais dos pacientes em oxigenoterapia domiciliar prolongada acompanhados pelo programa de atendimento domiciliar do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, durante um período de 8 anos, e comparar os grupos com e sem hipertensão pulmonar secundária. Estimar o custo do programa utilizando concentradores versus cilindros de oxigênio arcados pela instituição. MÉTODOS: Estudo descritivo retrospectivo e de coorte dos pacientes em oxigenoterapia domiciliar prolongada, em seguimento no período de 2002 a 2009, na Unidade de Pneumologia do Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. RESULTADOS: Foram estudados 165 pacientes, 53% do sexo masculino, com as medianas: idade de início da oxigenoterapia - 3,6 anos; tempo de oxigenoterapia - 7 anos; e tempo de sobrevida após início da oxigenoterapia - 3,4 anos. Os principais diagnósticos foram: fibrose cística (22%), displasia broncopulmonar (19%) e bronquiolite obliterante (15%). Dos 33 pacientes que realizaram espirometria, 70% apresentavam distúrbio ventilatório obstrutivo grave. O exame ecocardiográfico foi executado em 134 pacientes; 51% deles tinham hipertensão pulmonar secundária. Houve associação estatisticamente significante entre: presença de hipertensão pulmonar e necessidade de maiores fluxos de oxigênio (qui-quadrado, p = 0,011); e presença de hipertensão pulmonar e maior tempo de oxigenoterapia (Logrank, p = 0,0001). Não houve diferença estatisticamente significante entre tempo de sobrevida após início da oxigenoterapia e presença de hipertensão pulmonar. Os custos médios mensais do programa foram: US$ 7.392,93 para os concentradores e US$ 16.630,92 para cilindros. CONCLUSÕES: A oxigenoterapia domiciliar prolongada foi empregada em distintas doenças crônicas, predominantemente em lactentes e pré-escolares. Houve alta frequência de hipertensão pulmonar associada a maiores períodos de uso e fluxos de oxigênio, sem associação à sobrevida. A substituição dos cilindros por concentradores poderá reduzir custos significativamente.
Resumo:
The fluid flow over bodies with complex geometry has been the subject of research of many scientists and widely explored experimentally and numerically. The present study proposes an Eulerian Immersed Boundary Method for flows simulations over stationary or moving rigid bodies. The proposed method allows the use of Cartesians Meshes. Here, two-dimensional simulations of fluid flow over stationary and oscillating circular cylinders were used for verification and validation. Four different cases were explored: the flow over a stationary cylinder, the flow over a cylinder oscillating in the flow direction, the flow over a cylinder oscillating in the normal flow direction, and a cylinder with angular oscillation. The time integration was carried out by a classical 4th order Runge-Kutta scheme, with a time step of the same order of distance between two consecutive points in x direction. High-order compact finite difference schemes were used to calculate spatial derivatives. The drag and lift coefficients, the lock-in phenomenon and vorticity contour plots were used for the verification and validation of the proposed method. The extension of the current method allowing the study of a body with different geometry and three-dimensional simulations is straightforward. The results obtained show a good agreement with both numerical and experimental results, encouraging the use of the proposed method.
Resumo:
Mixing layers are present in very different types of physical situations such as atmospheric flows, aerodynamics and combustion. It is, therefore, a well researched subject, but there are aspects that require further studies. Here the instability of two-and three-dimensional perturbations in the compressible mixing layer was investigated by numerical simulations. In the numerical code, the derivatives were discretized using high-order compact finite-difference schemes. A stretching in the normal direction was implemented with both the objective of reducing the sound waves generated by the shear region and improving the resolution near the center. The compact schemes were modified to work with non-uniform grids. Numerical tests started with an analysis of the growth rate in the linear regime to verify the code implementation. Tests were also performed in the non-linear regime and it was possible to reproduce the vortex roll-up and pairing, both in two-and three-dimensional situations. Amplification rate analysis was also performed for the secondary instability of this flow. It was found that, for essentially incompressible flow, maximum growth rates occurred for a spanwise wavelength of approximately 2/3 of the streamwise spacing of the vortices. The result demonstrated the applicability of the theory developed by Pierrehumbet and Widnall. Compressibility effects were then considered and the maximum growth rates obtained for relatively high Mach numbers (typically under 0.8) were also presented.
Resumo:
Estuarine hydrodynamics is a key factor in the definition of the filtering capacity of an estuary and results from the interaction of the processes that control the inlet morphodynamics and those that are acting in the mixing of the water in the estuary. The hydrodynamics and suspended sediment transport in the Camboriú estuary were assessed by two field campaigns conducted in 1998 that covered both neap and spring tide conditions. The period measured represents the estuarine hydrodynamics and sediment transport prior to the construction of the jetty in 2003 and provides important background information for the Camboriú estuary. Each field campaign covered two complete tidal cycles with hourly measurements of currents, salinity, suspended sediment concentration and water level. Results show that the Camboriú estuary is partially mixed with the vertical structure varying as a function of the tidal range and tidal phase. The dynamic estuarine structure can be balanced between the stabilizing effects generated by the vertical density gradient, which produces buoyancy and stratification flows, and the turbulent effects generated by the vertical velocity gradient that generates vertical mixing. The main sediment source for the water column are the bottom sediments, periodically resuspended by the tidal currents. The advective salt and suspended sediment transport was different between neap and spring tides, being more complex at spring tide. The river discharge term was important under both tidal conditions. The tidal correlation term was also important, being dominant in the suspended sediment transport during the spring tide. The gravitational circulation and Stokes drift played a secondary role in the estuarine transport processes.